K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

22 tháng 4 2021

a, 

xét \(\Delta\) AHD và \(\Delta\) AHB có 

 <DAH chung 

< ADH=<AHB(=90)

\(\Rightarrow\Delta AHD\) ~ \(\Delta AHB\)

b,\(\dfrac{\Rightarrow AH}{BA}=\dfrac{AD}{AH}\Rightarrow AH^2=AB\cdot AD\)

ta có <ABC+< BAH=90\(^0\)

           < BAH+<HAC=90\(^0\)

\(\Rightarrow\) <ABC=<HAC

xét \(\Delta\) ABH và \(\Delta\) CAH 

<ABH=<CAH (cmt)

<AHB=<AHC(=90)

\(\Rightarrow\Delta ABH\) ~ \(\Delta CAH\)

\(\dfrac{\Rightarrow AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=HB\cdot HC\)

ta có \(AB\cdot AD=AH^2\)

         \(HB\cdot HC=AH^2\)

\(\Rightarrow AD\cdot AB=HB\cdot HC\) (dpcm)

22 tháng 4 2021

Hình tự vẽ nha

a)    Xét Δ AHD và Δ AB có 

        ∠ H = ∠ D ( = 90o )

           ∠ A chung

Vậy △ AHD ∼ △ADB

 

18 tháng 2 2017

bn tham khảo ở đây nha:http://text.123doc.org/document/658748-6-bai-toan-hinh-4-de-thi-ki-i-toan-8.htm

4 tháng 4 2023

Cậu ơi, cậu hk lm câu c cho tớ hả :3?

14 tháng 1 2018

A B C D B H Chứng minh:
a) Vì △ABC cân tại A ⇒ AB = AC
Xét △ABH và △ACH có:
AB = AC (cmt)
\(\widehat{BAH}=\widehat{CAH}\) (gt)
AH - cạnh chung
⇒△ABH = △ACH (c.g.c)
⇒ ( tương ứng)
⇒ HB = HC ( tương ứng)
\(\widehat{AHB}+\widehat{AHC}=180^o\) ( kề bù)
\(\widehat{AHB}=\widehat{AHC}\) (cmt)
\(\widehat{AHB}=\widehat{AHC}=90^o\)
⇒ AH ⊥ BC ⇒ AH là đường cao của △ABC
b)
Xét △AHD vuông tại D và △AHE vuông tại E có:
\(\widehat{DAH}=\widehat{EAH}\text{ (gt)}\)
AH - cạnh chung
⇒ △AHD = △AHE ( cạnh huyền - góc nhọn )
⇒ HD = HE ( tương ứng )

14 tháng 1 2018

Cảm ơn

16 tháng 4 2021

a/ Xét \(\Delta ABC\) và \(\Delta HAC\) có :

\(\left\{{}\begin{matrix}\widehat{C}chung\\\widehat{BAC}=\widehat{AHC}=90^0\end{matrix}\right.\)

\(\Leftrightarrow\Delta ABC\sim HAC\left(g-g\right)\)

b/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

\(AH.BC=AB.AC\Leftrightarrow AH=\dfrac{AB.AC}{BC}=4,8cm\)

c/ \(\Delta HEA\sim\Delta CEH\left(g-g\right)\)

\(\Leftrightarrow\dfrac{HE}{CE}=\dfrac{EA}{HE}\Leftrightarrow HE^2=EA.EC\left(đpcm\right)\)

 

16 tháng 4 2021

a) Xét ΔHAC và ΔABC có:

∠(ACH ) là góc chung

∠(BAC)= ∠(AHC) = 90o

⇒ ΔHAC ∼ ΔABC (g.g)

b) Xét ΔHAD và ΔBAH có:

∠(DAH ) là góc chung

∠(ADH) = ∠(AHB) = 90o

⇒ ΔHAD ∼ ΔBAH (g.g)

c) Tứ giác ADHE có 3 góc vuông ⇒ ADHE là hình chữ nhật.

⇒ ΔADH= ΔAEH ( c.c.c) ⇒ ∠(DHA)= ∠(DEA)

Mặt khác: ΔHAD ∼ ΔBAH ⇒ ∠(DHA)= ∠(BAH)

∠(DEA)= ∠(BAH)

Xét ΔEAD và ΔBAC có:

∠(DEA)= ∠(BAH)

∠(DAE ) là góc chung

ΔEAD ∼ ΔBAC (g.g)

d) ΔEAD ∼ ΔBAC

ΔABC vuông tại A, theo định lí Pytago:

Theo b, ta có:

 

 

 

 

 

 

 

 

 

16 tháng 4 2021

Ý cuối nhầm không thế ạ?undefined

a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có 

\(\widehat{DAH}\) chung

Do đó: ΔAHB\(\sim\)ΔADH(g-g)

 

20 tháng 6 2020

a) Xét \(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{HAB}=\widehat{BAC}=90^0\)

\(\widehat{B}:chung\)

do đó \(\Delta HBA\sim\Delta ABC\left(g-g\right)\)

b) Xét \(\text{ΔHBAvàΔHAC}\) có:

\(\widehat{BHA}=\widehat{CHA}=90^o\)

\(\widehat{ABH}=\widehat{HAC}\) ( do cùng phụ với \(\widehat{BAH}\))

Do đó: \(\Delta HBA\sim\Delta HAC\left(g-g\right)\)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB\cdot HC\)

c) Xét tứ giác ADHE có:

\(\widehat{A}=\widehat{D}=\widehat{E}=90^o\)

Do đó ADHE là hình chữ nhật

Gọi O là giao điểm 2 đường chéo hình chữ nhật(AH và DE)

\(\Rightarrow OD=OA\)(tính chất HCN)

\(\Rightarrow\Delta ODA\) cân tại O

\(\Rightarrow\widehat{ODA}=\widehat{OAD}\)

Xét \(\Delta ADE\)\(\Delta HAB\) có:

\(\widehat{BHA}=\widehat{DAE}=90^o\\ \widehat{ODA}=\widehat{OAD}\left(cmt\right)\\ \Rightarrow\Delta ADE\sim\Delta HAB\)

\(\Delta HBA\sim\Delta ABC\left(cmt\right)\)

\(\Rightarrow\Delta ADE\sim\Delta ABC\) (tính chất bắc cầu)

21 tháng 6 2020

còn câu d ?

2 tháng 2 2021

Bổ sung hình vẽ