Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc CBA chung
Do đó: ΔAHB\(\sim\)ΔCAB
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: \(HC=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xét ΔHAC có AD là phân giác
nên DH/HA=DC/AC
=>DH/3=DC/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DH}{3}=\dfrac{DC}{5}=\dfrac{DH+DC}{3+5}=\dfrac{8}{8}=1\)
Do đó: DH=3cm; DC=5cm
c: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
=>ΔBAD cân tại B
mà BK là đường phân giác
nên BK là đường cao
Xét ΔEFA vuông tại F và ΔEHB vuông tại H có
\(\widehat{FEA}=\widehat{HEB}\)
Do đó: ΔEFA\(\sim\)ΔEHB
a,Xét \(\Delta\)AHB và AHD có:AH chung
BH=HD(gt)
AHB=AHD=90
vậy tam giác AHB= tam giác AHC
b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha
Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)
Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)
suy ra tam giác ABD đều
c,Dễ thấy được tam giác ADC cân tại D nên AD=DC
Xét tam giác AHD và tam giác CED có:
AD=DC
HDA=EDC(2 góc đối đỉnh)
AHD=CED=90
nên tam giác AHD=tam giác CED(ch-gn)
suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB
vậy HB=DE(đpcm)
d, I là giao điểm của CE và AH chứ bạn
Xét tam giác AIC có : AE vuông góc với IC
CH vuông góc với IA
mà CH cắt AE tại D
nên D là trực tâm của tam giác IAC
hay ID vuống góc với AC
mặt khác DF vuông góc với AC
nên I ,D,F thẳng hàng
Chúc bạn học tốt
a,Xét \(\Delta AHB\)và \(\Delta AHD\)có
AH chung
HB=HD
\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)
=> \(\Delta AHB\)=\(\Delta AHD\)
b, xem lại đề
c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)
\(\Rightarrow\widehat{DAC}=30^0\)
\(\Rightarrow\Delta DAC\)cân tại D
\(\Rightarrow DA=DC\)
Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)
\(\Rightarrow HD=DE=BH\)(ĐPCM)
d,Xem lại đề
Chúc học tốt!!!!!! :)
a) Xét tam giác ABC và tam giác HBA có:
góc B chung
BAC=BHA ( =90 )
=> tam giác ABC đồng dạng với tam giác HBA
b) Xét tam giác ABC và tam giác HAC có:
BAC=AHC ( =90)
góc C chung
=> tam giác ABC đồng dạng với tam giác HAC
c) Xét tam giác HBA và tam giác HAC có:
góc A chung
BHA=AHC ( =90 )
=> tam giác HBA đồng dạng với tam giác HAC
=> \(\dfrac{HB}{AH}=\dfrac{HA}{HC}\)
=> AH^2=HB.HC
a,
xét \(\Delta\) AHD và \(\Delta\) AHB có
<DAH chung
< ADH=<AHB(=90)
\(\Rightarrow\Delta AHD\) ~ \(\Delta AHB\)
b,\(\dfrac{\Rightarrow AH}{BA}=\dfrac{AD}{AH}\Rightarrow AH^2=AB\cdot AD\)
ta có <ABC+< BAH=90\(^0\)
< BAH+<HAC=90\(^0\)
\(\Rightarrow\) <ABC=<HAC
xét \(\Delta\) ABH và \(\Delta\) CAH
<ABH=<CAH (cmt)
<AHB=<AHC(=90)
\(\Rightarrow\Delta ABH\) ~ \(\Delta CAH\)
\(\dfrac{\Rightarrow AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH^2=HB\cdot HC\)
ta có \(AB\cdot AD=AH^2\)
\(HB\cdot HC=AH^2\)
\(\Rightarrow AD\cdot AB=HB\cdot HC\) (dpcm)
Hình tự vẽ nha
a) Xét Δ AHD và Δ AB có
∠ H = ∠ D ( = 90o )
∠ A chung
Vậy △ AHD ∼ △ADB