K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(AH=\sqrt{HB\cdot HC}=24\left(cm\right)\)

BC=BH+CH=50(cm)

\(AB=\sqrt{18^2+24^2}=30\left(cm\right)\)

\(AC=\sqrt{24^2+32^2}=40\left(cm\right)\)

C=50+30+40=120(cm)

AH=căn 2*18=6cm

AB=căn 6^2+2^2=2*căn 10(cm)

11 tháng 8 2017

Ta có: BC = HC + HB = 18 + 32 = 50 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, ta có:

AB = \(\sqrt{BC.BH}=\sqrt{50.32}=40\)(cm)

AC = \(\sqrt{BC.HC}=\sqrt{50.18}=30\)(cm)

AH = \(\sqrt{BH.CH}=\sqrt{32.18}=24\)(cm)

=> Tam giác ABC có độ dài 3 cạnh là AB = 40cm; AC = 30cm; BC = 50cm và đường cao AH = 24cm

\(AC\simeq31,18\left(cm\right)\)

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Xét ΔABC vuông tại A có AH là đường cao

nên HB*HC=AH^2

=>2HB^2=16

=>HB^2=8

=>\(HB=2\sqrt{2}\left(cm\right)\)