Cho 𝛥𝐴𝐵𝐶 cân tại A, B=47o ; Gọi M là trung điểm của BC.
a) Tính số đo các góc của tam giác ABC
b) Chứng minh : 𝛥𝐴𝐵𝑀 = 𝛥𝐴𝐶𝑀
c) Chứng minh : AM + BM > AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(Tính chất tia phân giác)(1)
Xét ΔABC có
CE là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(Tính chất tia phân giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)
nên ED//BC(Định lí Ta lét đảo)
Xét tứ giác BEDC có ED//BC(cmt)
nên BEDC là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)
Hình thang BEDC(ED//BC) có \(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Ta có: \(\widehat{EDB}=\widehat{DBC}\)(ED//BC)
mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác)
nên \(\widehat{EDB}=\widehat{EBD}\)
Xét ΔEBD có \(\widehat{EDB}=\widehat{EBD}\)(cmt)
nên ΔEBD cân tại E(Định nghĩa tam giác cân)
hay ED=EB(đpcm)
ý a, tui chữa lại đề là \(\Delta BMC=\Delta CNB\)
a, do \(\Delta ABC\) cân tại A\(=>\left\{{}\begin{matrix}AB=AC\\\angle\left(B\right)=\angle\left(C\right)\left(1\right)\end{matrix}\right.\)
mà BM,CN là các trung tuyến\(=>\left\{{}\begin{matrix}BN=\dfrac{1}{2}AB\\CM=\dfrac{1}{2}AC\end{matrix}\right.\)
\(=>BN=CM\left(2\right)\)
có BC cạnh chung (3)
từ(1)(2)(3)\(=>\Delta BMC=\Delta CNB\left(c.g.c\right)\)
b,do \(\Delta BMC=\Delta CNB\left(cmt\right)=>\angle\left(KBC\right)=\angle\left(KCB\right)\)
\(=>\Delta BKC\) cân tại K
c, do \(\left\{{}\begin{matrix}BN=NA\\CM=AM\end{matrix}\right.\)=>MN là đường trung bình \(\Delta ABC=>MN//BC\)
Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m
Tam giác ABD cân tại A =>^ABD=^ADB
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ
Vậy ^ABD= (1/2).m
Tam giác BCD cân tại D =>^DBC=^DCB=m độ
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ)
=(3/2).m (độ)
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ)
hay 5/2.m=180 độ => m=360độ:5=72 độ
và 180 độ-m=108 độ
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
=>\(\widehat{ACB}=47^0\)
ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}=180^0-2\cdot47^0=86^0\)
b: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
c Xét ΔAMB có AM+BM>AB
mà AB=AC(ΔABC cân tại A)
nên AM+BM>AC