Ta có tam giác ABC vuông tại A. AB=12;BC=16. AC???
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
ta có : AB2 + AC2 = 92 + 122 = 81 +144 = 225
BC2 = 152 = 225
suy ra AB2 + AC2 = BC2
do đó tam giác ABC vuông tại A ( theo định lí pitago đảo)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
Xét EAF và EAC có:
+chung đường cao hạ từ e
+AF = 1/3 AC
=> S EAF= 1/3 S EAC
Xét EAC và ABC có:
+Chung đường cao hạ từ C
+AE=3/4 AB
=>S EAC =3/4 S ABC
=> S EAC= (1/3 x 3/4) S ABC = 1/4 S ABC
Tương tự
S BED =1/8 S ABC
S CDF=1/3 S ABC
=> S DEF= S ABC -S BED -S CDF
= S ABC -1/4 S ABC -1/8 S ABC -1/3 S ABC
= 7/24 S ABC
= 7/24 x 1/2 x AB x AC
= 7/24 x 1/2 x 8 x 12 =14 (cm^2)
Xét EAF và EAC có:
+chung đường cao hạ từ e
+AF = 1/3 AC
=> S EAF= 1/3 S EAC
Xét EAC và ABC có:
+Chung đường cao hạ từ C
+AE=3/4 AB
=>S EAC =3/4 S ABC
=> S EAC= (1/3 x 3/4) S ABC = 1/4 S ABC
Tương tự
S BED =1/8 S ABC
S CDF=1/3 S ABC
=> S DEF= S ABC -S BED -S CDF
= S ABC -1/4 S ABC -1/8 S ABC -1/3 S ABC
= 7/24 S ABC
= 7/24 x 1/2 x AB x AC
= 7/24 x 1/2 x 8 x 12 =14 (cm^2)
ABC vuông tại A nên BC là cạnh huyền,AB và AC là 2 cạnh góc vuông.Ta có :
AB2+AC2 = BC2 => AC2 = BC2 - AB2 = 162 - 122 = 256 - 144 = 112 => AC = 10,5830052442...