cho tam giác ABC (AB>AC) trên cạnh AB lấy điểm E sao cho BE = AC gọi I;D;F lần lượt là trung điểm các đoạn thẳng CE;AE;BC chứng minh
a. tam giác IDF là tam giác cân
b.góc BAC = 2 lần gócIDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha
Xét tam giác ABE và tam giác ACD có
AB=AC ( gt)
AD=AE ( gt)
góc BAC chung
=> tam giác ABE= tam giác ACD
=> BE=CD (đpcm)
1: Xét ΔABH và ΔAEH có
AB=AE
BH=EH
AH chung
Do đó: ΔAHB=ΔAHE
2: ΔAHB=ΔAHE
=>\(\widehat{AHB}=\widehat{AHE}\)
mà \(\widehat{AHB}+\widehat{AHE}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHE}=\dfrac{180^0}{2}=90^0\)
=>AH\(\perp\)BE
3: Sửa đề: Kẻ tia Ax//BE, trên Ax lấy I sao cho AI=BE(I và B nằm cùng phía so với AH)
a: Xét tứ giác ABFE có
H là trung điểm chung của AF và BE
=>ABFE là hình bình hành
=>BF=AE và BF//AE
b:
Xét tứ giác AEBI có
AI//BE
AI=BE
Do đó: AEBI là hình bình hành
=>BI//AE
Ta có: BF//AE
BI//AE
BI,BF có điểm chung là B
Do đó: F,B,I thẳng hàng
Xét ΔAIE và ΔAIB có
AE=AB
góc EAI=góc BAI
AI chung
=>ΔAIE=ΔAIB
Xét ΔBAK có
BI vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
Sửa đề: ΔABC vuông tại A
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
vậy: BC=10cm
b) Xét ΔAMC và ΔEMB có
CM=BM(M là trung điểm của BC)
\(\widehat{AMC}=\widehat{BME}\)(hai góc đối đỉnh)
MA=ME(gt)
Do đó: ΔAMC=ΔEMB(c-g-c)
Suy ra: AC=BE(hai cạnh tương ứng)
Xét ΔAMB và ΔEMC có
AM=EM(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{BAM}=\widehat{CEM}\)(hai góc tương ứng)
mà \(\widehat{BAM}\) và \(\widehat{CEM}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
1: Xét ΔABH và ΔAEH có
AB=AE
BH=EH
AH chung
Do đó: ΔABH=ΔAEH
2: Ta có: ΔABE cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
3:
a: Xét tứ giác ABFE có
H là trung điểm BE
H là trung điểm của AF
Do đó: ABFE là hình bình hành
Suy ra; BF=AE
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{A}\) chung
AE=AD
Do đó: ΔABE=ΔACD
a: Xét ΔEBC có
I là trung điểm của EC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔEBC
Suy ra: \(IF=\dfrac{EB}{2}\left(1\right)\)
Xét ΔAEC có
I là trung điểm của EC
D là trung điểm của AE
Do đó: ID là đường trung bình của ΔAEC
Suy ra: \(ID=\dfrac{AC}{2}\left(2\right)\)
Từ (1) và (2) suy ra IF=ID
hay ΔIDF cân tại I