Cho tam giác ABC vuông cân tại A.M là điểm tuỳ ý nằm giữa B và C.Vẽ đường cao AH của tam giác ABC.
a)C/m;AH=BC:2
b)C/m MB^2 + MC^2 = 2MA^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề bài sai rồi bạn xem lại đi
có BH vuông góc AE tại H
=> BH < AB ( quan hệ đường xiên - đường vuông góc )
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)
góc HBM = góc MAK(cmt)
BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).
a) Xét tam giác ABC và AED có: AB = AE ; góc BAC = EAD (= 90o); AC = AD
=> tam giác ABC = AED (c - g - c)
b) Trong tam giác vuông AHB có: góc HBA + A2 = 90o
mà góc A1 + A2 = 90o
=> góc A1 = góc HBA mà góc HBA = DEA (tam giác ABC = AED)
=> góc A1 = góc DEA => tam giác MEA cân tại M => ME = MA (1)
Tương tư, trong tam giác vuông AHC có: A2 + HCA = 90o
mà A2 + A1 = 90o
=> góc HCA = A1 mà góc HCA = MDA ( do tam giác ABC = AED)
=> góc A1 = góc MDA => tam giác MAD cân tại M => MA = MD (2)
Từ (1)(2) => ME = MD => M là trung điểm của DE => AM là trung tuyến của tam giác ADE
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFH vuông tại F và ΔAEH vuông tại E có
AH chung
AF=AE
Do đó: ΔAFH=ΔAEH
Suy ra: \(\widehat{FAH}=\widehat{EAH}\)
hay AH là tia phân giác của góc BAC
mà ΔABC cân tại A
nên AH là đường cao
Xét tg ABE vuông tại E và tg ACF vuông tại F, có:
AB=AC(tg ABC cân tại A)
góc E=góc F(=90 độ)
góc BAE chung.
=>tg ABE=tg ACF.
b, Xét tg AHF vuông tại F và ΔAEH vuông tại E có
AH chung.
AF=AE(2 cạnh tương ứng)
góc E=góc F.
=>tg AHF=tg AEH.
=>góc FAH=góc EAH.
=>AH là cạnh chung của 2 góc. Vậy AH là tia phân giác của góc BAC.
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
ΔABC vuông tại A
mà AH là trung tuyến
nên AH=BC/2
b: MB^2=(BH-HM)^2
=BH^2-2*BH*HM+HM^2
=BH^2-2*BH*HM+MA^2-AH^2
MC^2=(MH+HC)^2
=MH^2+HC^2+2*MH*HC
=HC^2+2*MH*HB+MA^2-AH^2
=>MB^2+MC^2
=BH^2-2*BH*HM+MA^2-AH^2+HC^2+2*MH*HB+MA^2-AH^2
=2AM^2