K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

phynit, Akai Haruma, Bùi Thị Vân

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

25 tháng 3 2020

Mình không vẽ hình, bạn tự vẽ nhé!

a) M là trung điểm của BC \(\Rightarrow BM=MC\)

Xét \(\Delta BAM\)và \(\Delta CDM\)có:

MA=MD ( giả thiết )

\(\widehat{BMA}=\widehat{CMD}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta BAM=\Delta CDM\)( c.g.c )

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

MA=MD ( giả thiết )

\(\widehat{BMD}=\widehat{CMA}\)( tính chất đối đỉnh )

BM=MC ( chứng minh trên )

\(\Rightarrow\Delta ACM=\Delta DBM\)( c.g.c )

\(\Rightarrow AC=BD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{MAC}=\widehat{MDB}\)(  2 góc tương ứng ) ở vị trí so lê trong

\(\Rightarrow\)AC//BD

c) Đề bài không rõ ràng mình không làm được

d) Đề bài không rõ ràng mình không làm được

Chúc bạn học tốt!

23 tháng 3 2020

các bạn ơi, mình cần gấp, vẽ hình giúp mình nhé

Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC
=>AB=DC

mà AB<AC

nên CD<CA

Xét ΔCDA có CD<CA

mà \(\widehat{CAD};\widehat{CDA}\) lần lượt là góc đối diện của cạnh CD,CA

nên \(\widehat{CAD}< \widehat{CDA}\)

mà \(\widehat{CDA}=\widehat{BAM}\)(ΔMAB=ΔMDC)

nên \(\widehat{BAM}>\widehat{CAM}\)

Bài 2

Bài làm

a) Xét tam giác ABM và tam giác DCM có:

BM = MC ( Do M là trung điểm BC )

^AMB = ^DMC ( hai góc đối )

MD = MA ( gt )

=> Tam giác ABM = tam giác DCM ( c.g.c )

b) Xét tam giác BHA và tam giác BHE có:

HE = HA ( Do H là trung điểm AE )

^BHA = ^BHE ( = 90o )

BH chung

=> Tam giác BHA = tam giác BHE ( c.g.c ) 

=> AB = BE

Mà tam giác ABM = tam giác DCM ( cmt )

=> AB = CD 

=> BE = CD ( đpcm )

Bài 3

Bài làm

a) Xét tam giác ABD và tam giác ACD có: 

AB = AB ( gt )

BD = DC ( Do M là trung điểm BC )

AD chung

=> Tam giác ABD = tam giác ACD ( c.c.c )

b) Xét tam giác BEC và tam giác MEA có:

AE = EC ( Do E kà trung điểm AC )

^BEC = ^MEA ( hai góc đối )

BE = EM ( gt )

=> Tam giác BEC = tam giác MEA ( c.g.c )

=> BC = AM

Mà BD = 1/2 . BC ( Do D là trung điểm BC )

hay BD = 1/2 . AM

Hay AM = 2.BD ( đpcm )

c) Vì tam giác ABD = tam giác ACD ( cmt )

=> ^ADB = ^ADC ( hai góc tương ứng )

Mà ^ADB + ^ADC = 180o ( hai góc kề bù )

=> ^ADB = ^ADC = 180o/2 = 90o 

=> AD vuông góc với BC                         (1)

Vì tam giác BEC = tam giác MEA ( cmt )

=> ^EBC = ^EMA ( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong

=> AM // BC                              (2)

Từ (1) và (2) => AM vuông góc với AD 

=> ^MAD = 90o 

# Học tốt #

30 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

18 tháng 4 2020

kékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdjkékduhchchdjjdj

20 tháng 11 2016

Violympic toán 7

a)

Xét ΔABM và ΔDCM có:

MB = MC (gt)

∠AMB = ∠DCM (đối đỉnh)

MA = MD (gt)

Vậy ΔABM = ΔDCM (c-g-c)

b)

Từ ΔABM = ΔDCM (chứng minh câu a)

Suy ra: ∠ABM = ∠ DCM (hai góc tương ứng)

Mà hai góc ∠ABM và ∠DCM ở vị trí so le trong

Vậy AB // DC (đpcm)

c)

Xét ΔBEM và ΔCFM (∠E = ∠F = 90º)

Có: MB = MC (gt)

∠AMB = ∠DMC (đối đỉnh)

Do đó: ΔBEM = ΔCFM (cạnh huyền-góc nhọn)

Suy ra: ME = MF (hai cạnh tương ứng)

Vậy M là trung điểm của EF (đpcm)

20 tháng 11 2016

Này ! Cái góc ý ... cậu viết sao vậy ?