cho hình vẽ, biết O là tâm đường tròn đường kính CD; AB=OD, góc DOE=42o .Số đo của góc BAO là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (I) có
ΔADO nội tiếp
AO là đường kính
=>ΔADO vuông tại D
góc ADC=góc AHC=90 độ
=>AHDC nội tiếp
Xét ΔOHC vuông tại H và ΔODA vuông tại D có
OC=OA
góc HOC chung
=>ΔOHC=ΔODA
=>OH=OD
Xét ΔOAC có OH/OA=OD/OC
nên HD//AC
Xét tứ giác AHDC có
HD//AC
góc HAC=góc DCA
=>AHDC là hình thang cân
a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)
b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)
\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)
c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)
mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)
mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)
Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)
\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp
a: Xét (O) có
AD là đường kính
AB\(\perp\)AD tại A
Do đó: AB là tiếp tuyến của (O)
Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)
nên AOMB là tứ giác nội tiếp
=>A,O,M,B cùng thuộc một đường tròn
b: Xét (O) có
OD là bán kính
DK\(\perp\)DO tại D
Do đó: DK là tiếp tuyến của (O)
Xét (O) có
BA,BM là các tiếp tuyến
Do đó: OB là phân giác của góc AOM
=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)
Xét (O) có
KM,KD là các tiếp tuyến
Do đó: OK là phân giác của góc DOM
=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)
Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)
=>\(2\cdot\widehat{KOB}=180^0\)
=>\(\widehat{KOB}=90^0\)
=>OK\(\perp\)OB
Xét (O) có
BA,BM là các tiếp tuyến
Do đó: BA=BM
Xét (O) có
KD,KM là các tiếp tuyến
Do đó: KD=KM
Xét ΔOBK vuông tại O có OM là đường cao
nên \(BM\cdot MK=OM^2\)
=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)
c: Ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra BO là đường trung trực của AM
=>BO\(\perp\)AM
mà BO\(\perp\)OK
nên AM//OK
Xét ΔDEA có
O là trung điểm của AD
OK//AE
Do đó: K là trung điểm của DE
a: Xét (O) có
AD là đường kính
AB\(\perp\)AD tại A
Do đó: AB là tiếp tuyến của (O)
Xét tứ giác AOMB có \(\widehat{OAB}+\widehat{OMB}=90^0+90^0=180^0\)
nên AOMB là tứ giác nội tiếp
=>A,O,M,B cùng thuộc một đường tròn
b: Xét (O) có
OD là bán kính
DK\(\perp\)DO tại D
Do đó: DK là tiếp tuyến của (O)
Xét (O) có
BA,BM là các tiếp tuyến
Do đó: OB là phân giác của góc AOM
=>\(\widehat{AOM}=2\cdot\widehat{MOB}\)
Xét (O) có
KM,KD là các tiếp tuyến
Do đó: OK là phân giác của góc DOM
=>\(\widehat{DOM}=2\cdot\widehat{KOM}\)
Ta có: \(\widehat{MOA}+\widehat{MOD}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{KOM}+\widehat{BOM}\right)=180^0\)
=>\(2\cdot\widehat{KOB}=180^0\)
=>\(\widehat{KOB}=90^0\)
=>OK\(\perp\)OB
Xét (O) có
BA,BM là các tiếp tuyến
Do đó: BA=BM
Xét (O) có
KD,KM là các tiếp tuyến
Do đó: KD=KM
Xét ΔOBK vuông tại O có OM là đường cao
nên \(BM\cdot MK=OM^2\)
=>\(BM\cdot MK=\left(\dfrac{1}{2}AD\right)^2=\dfrac{1}{4}AD^2=\dfrac{1}{4}AB^2\)
c: Ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra BO là đường trung trực của AM
=>BO\(\perp\)AM
mà BO\(\perp\)OK
nên AM//OK
Xét ΔDEA có
O là trung điểm của AD
OK//AE
Do đó: K là trung điểm của DE
góc BAO=1/2(sđ cung ED-sđ cung BC)
=1/2(42 độ-sđ cung BC)
=21 độ-1/2*sđ cung BC
BA=OD=BD
=>ΔBAD cân tại B
=>góc BAO=góc BOA=sđcung BC
=>21 độ-1/2*sđ cung BC=sđ cung BC
=>sđ cung BC=14 độ
=>góc BAO=21-7=14 độ