K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

Xét tg ABC vuông tại A

BC^2=AB^2+AC^2(đl Pytago)

AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144

theo t/c dãy tỉ số=nhau ta có:

AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)

=>AB^2=25.4=100=10^2=>AB=10(cm)

AC^2=144.4=576=24^2=>AC=24(cm)

 Vậy...

10 tháng 2 2018

Xét tg ABC vuông tại A
BC^2=AB^2+AC^2(đl Pytago)
AB:AC=5:12<=>AB/5=AC/12<=>AB^2/25=AC^2/144
theo t/c dãy tỉ số=nhau ta có:
AB^2/25=AC^2/144=AB^2+AC^2/25+144=BC^2/169=BC^2/13^2=(BC/13)^2=(26/13)^2=2^2=4(cm)
=>AB^2=25.4=100=10^2=>AB=10(cm)
AC^2=144.4=576=24^2=>AC=24(cm)
 Vậy...

:D

7 tháng 3 2021

answer-reply-image

Bạn tham khảo nhé!

5 tháng 2 2021

\(\Delta ABC\)vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)( định lý Pytago )

\(\Rightarrow AB^2+AC^2=26^2=676\)

Từ \(\frac{AB}{AC}=\frac{5}{12}\)\(\Rightarrow\frac{AB}{5}=\frac{AC}{12}\)\(\Rightarrow\left(\frac{AB}{5}\right)^2=\left(\frac{AC}{12}\right)^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left(\frac{AB}{5}\right)^2=\left(\frac{AC}{12}\right)^2=\frac{AB^2}{5^2}=\frac{AC^2}{12^2}=\frac{AB^2}{25}=\frac{AC^2}{144}=\frac{AB^2+AC^2}{25+144}=\frac{BC^2}{169}=\frac{676}{169}=4\)

\(\Rightarrow AB^2=4.25=100\)\(\Rightarrow AB=10\left(cm\right)\)

    \(AC^2=4.144=576\)\(\Rightarrow AC=24\left(cm\right)\)

Vậy \(AB=10cm\)\(AC=24cm\)

Đề sai rồi bạn

7 tháng 3 2022

tui vẽ hoài chẳng ra luôn

a: BC=10cm

C=AB+BC+AC=6+8+10=24(cm)

b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔABD=ΔHBD

c: Ta có: ΔABD=ΔHBD

nên DA=DH

mà DH<DC

nên DA<DC

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)