(15-2n)chia hết cho n+1 (n<7;=7)
(6n+9)chia hết cho (4n-1) (n>1;=1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=\(\frac{15-2n}{n+1}=-2+\frac{17}{n+1}\)
để (15-2n) chia hết cho n+1
=> A thuộc số nguyên
=> \(\frac{17}{n+1}\)thuộc số nguyên
hay n+1 thuộc Ư(17)={1; -1;2; -2}
nên n+1=1
n+1=-1
n+1=2
n+1=-2
<=> n=0
n=-2
n=1
n=-3
vậy với n={0; -2;1; -3} thì 15-2n chia hết cho n+1
a) n+13 chia hết cho n-5
=> n-5+5+13 chia hết cho n-5
=> n-5+18 chia hết cho n-5
=> n-5 chia hết cho n-5
=> 18 chia hết cho n-5
=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}
mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}
b) 15-2n chia hết cho n+1
=> 15-n+1+n+1-2 chia hết cho n+1
=> n+1+n+1+17 chia hết cho n+1
=> n+1 chia hết cho n+1
=> 17 chia hết cho n+1
=> n+1 thuộc Ư(17)={1;17;-1;-17}
=> n thuộc {0;16;-2;-18}
mà n là số tự nhiên và 2<,= 7 nên n=0
c) 6n+9 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1
=> n-1 chia hết cho n-1
=> 15 chia hết cho n-1
=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}
=> n thuộc {2;4;6;16;0;-2;-4;-14}
mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}
a) n+13 chia hết cho n-5
=> n-5+5+13 chia hết cho n-5
=> n-5+18 chia hết cho n-5
=> n-5 chia hết cho n-5
=> 18 chia hết cho n-5
=> n-5 thuộc Ư(18)={1;2;3;6;9;18;-1;-2;-3;-6;-9;-18}
=> n thuộc {6;7;8;11;14;23;4;3;2;-1;-4;-13}
mà n là số tự nhiên và n<5 nên n thuộc { 2;3;4}
b) 15-2n chia hết cho n+1
=> 15-n+1+n+1-2 chia hết cho n+1
=> n+1+n+1+17 chia hết cho n+1
=> n+1 chia hết cho n+1
=> 17 chia hết cho n+1
=> n+1 thuộc Ư(17)={1;17;-1;-17}
=> n thuộc {0;16;-2;-18}
mà n là số tự nhiên và 2<,= 7 nên n=0
c) 6n+9 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+9+6 chia hết cho n-1
=> n-1+n-1+n-1+n-1+n-1+n-1+15 chia hết cho n-1
=> n-1 chia hết cho n-1
=> 15 chia hết cho n-1
=> n-1 thuộc Ư(15)={1;3;5;15;-1;-3;-5;-15}
=> n thuộc {2;4;6;16;0;-2;-4;-14}
mả n là số tự nhiên và n>,=1 nên n thuộc {2;4;6;16}
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
(2n+7):(n+1)
=>(4n+14):(n+1)
=>4n:n+14:1
=>(2n+7)chia hết (n+1)
=>n thuộc B(9)
=>n={0,9,18,27,...}
=>vì 10<n>75 =>n={18,27,36,45,54,63,72}
a)\(n+8⋮n-1\)
\(\Leftrightarrow n-1+9⋮n-1\)
\(\Leftrightarrow9⋮n-1\)
\(Do\)\(n\in N\)\(\Rightarrow n-1\inƯ\left(9\right)=\left\{1;3;9\right\}\)
\(\Rightarrow n\in\left\{0;2;8\right\}\)
Các phần khác tương tự