Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
a) Ta có: n+4 chia hết cho 4.
Suy ra 4 chia hết cho n.Vậy n=1;2
b, 3n+7 chia hết cho n => 7 chia hết n
Vậy n=1
còn nhiều quá
c) n2 + 2n + 7 chia hết cho n + 2
=> n(n + 2) + 7 chia hết cho n + 2
Mà n(n + 2) chia hết cho n + 2
=> 7 chia hết cho n + 2
=> n + 2 \(\in\){-1;1;-7;7}
=> n \(\in\){-3;-1;-9;5}
a) n + 6 chia hết cho n
Mà n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\){-1;1;-2;2;-3;3;-6;6}
Mà n thuộc N
=. n \(\in\){1;2;3;6}
a) n+2 thuộc Ư(20) = {-1,-2,-4,-5,-10,-20,1,2,4,5,10,20}
Ta có bảng :
n+2 | -1 | -2 | -4 | -5 | -10 | -20 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -3 | -4 | -6 | -7 | -12 | -22 | -1 | 0 | 2 | 3 | 8 | 18 |
Vậy n = {-22,-12,-7,-6,-4,-3,-1,0,2,3,8,18}
b) 2n+3 thuộc Ư(16) = {-1,-2,-4,-8,-16,1,2,4,8,16}
Ta có bảng :
2n+3 | -1 | -2 | -4 | -8 | -16 | 1 | 2 | 4 | 8 | 16 |
n | -2 | \(\frac{-5}{2}\) | \(\frac{-7}{2}\) | \(\frac{-11}{2}\) | \(\frac{-19}{2}\) | -1 | \(\frac{-1}{2}\) | \(\frac{1}{2}\) | \(\frac{5}{2}\) | \(\frac{13}{2}\) |
Vậy ...
c) => n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n = {-7,-4,-3,-2,0,1,2,5}
d) => n-2 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n-2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 1 | 0 | -1 | -4 | 3 | 4 | 5 | 8 |
Vậy n= {-4,-1,0,1,3,4,5,8}
e) =>2n+1 thuộc Ư(14)={-1,-2,-7,-14,1,2,7,14}
Ta có bảng :
2n+1 | -1 | -2 | -7 | -14 | 1 | 2 | 7 | 14 |
n | -1 | \(\frac{-3}{2}\) | -4 | \(\frac{-15}{2}\) | 0 | \(\frac{1}{2}\) | 3 | \(\frac{13}{2}\) |
f) =>2n-1 thuộc Ư(6)= {-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
2n-1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 0 | \(\frac{-1}{2}\) | -1 | \(\frac{-5}{2}\) | 1 | \(\frac{3}{2}\) | 2 | \(\frac{7}{2}\) |
Vậy ...
1.=> n+7-(n+2) chia hết cho n+2
=>n+7-n-2 chia hết cho n+2
=>5 chia hết cho n+2
=>n+2 thuộc Ư(5)=1;5
ta có bảng:
n+2 | 1 | 5 |
n | loại | 3 |
Vậy n=3
MÌNH MỚI NGHĨ ĐƯỢC TỚI ĐÂY THÔI XIN LỖI NHÉ
3.3n+15 chia hết cho n+1
=>3n+15-n+1 chia hết cho n+1
=>3n+15-3(n+1) chia hết cho n+1
=>3n+15-3n-3 chia hết cho n+1
=>12 chia hết cho n+1
=>n+1 thuộc Ư(12)=1;2;3;4;6;12
ta có bảng:
n+1 | 1 | 2 | 3 | 4 | 12 |
n | 0 | 1 | 2 | 3 | 11 |
Vậy n thuộc 0;1;2;3;11
a) n + 3 chia hết cho n
Vì n chia hết cho n nên để n + 3 chia hết cho n thì 3 chia hết cho n
Từ đó suy ra : n \(\in\)Ư ( 3 ) = { 1 ; 3 }
b) 35 - 12n chia hết cho n ( n < 3 )
Vì 12n chia hết cho n nên để 35 - 12n chia hết cho n thì 35 chia hết cho n
từ đó suy ra : n \(\in\)Ư ( 35 ) = { 1 ; 5 ; 7 ; 35 }
Mà n < 3 nên n = 1
Vậy n = 1
c) 16 - 3n chia hết cho n + 4 ( n < 6 )
theo bài ra ta có :
16 - 3n chia hết cho n + 4
28 . ( 3n + 12 ) chia hết cho n + 4
28 - 3 . ( n + 4 ) chia hết cho n + 4
vì 3 . ( n + 4 ) chia hết cho n + 4 nên để 28 - 3 . ( n + 4 ) chia hết cho n + 4 thì 28 chia hết cho n + 4
Từ đó suy ra : n + 4 \(\in\)Ư ( 28 ) = { 1 ; 2 ; 4 ; 7 ; 14 ; 28 }
mà n < 6 nên n = { 1 ; 2 ; 4 }
vậy n = { 1 ; 2 ; 4 }
d) 5n + 2 chia hết cho 9 - 2n ( n < 5 )
ta có : 9 - 2n chia hết cho 9 - 2n nên 5 . ( 9 - 2n ) chia hết cho 9 - 2n ( 1 )
Vì 5n + 2 chia hết cho 9 - 2n nên 2 . ( 5n + 2 ) chia hết cho 9 - 2n ( 2 )
Từ ( 1 ) và ( 2 ) ta có :
5 . ( 9 - 2n ) + 2 . ( 5n + 2 ) chia hết cho 9 - 2n
=> 45 - 10n + 10n + 4 chia hết cho 9 - 2n
45 + 4 chia hết cho 9 - 2n
49 chia hết cho 9 - 2n
để 5n + 2 chia hết cho 9 - 2n thì 49 chia hết cho 9 - 2n
Vậy 9 - 2n \(\in\)Ư ( 49 ) = { 1 ; 7 ; 49 }
Vì 9 - 2n \(\le\)9 nên 9 - 2n \(\in\){ 1 ; 7 }
\(\Rightarrow\orbr{\begin{cases}9-2n=7\\9-2n=1\end{cases}\Rightarrow\orbr{\begin{cases}n=1\\n=4\end{cases}}}\)
a) n + 3 chia hết cho n ( n thuộc N )
Ta có : n chia hết cho n
n + 3 chia hết cho n
=> 3 chia hết cho n
=> n thuộc Ư ( 3 )
=> n thuộc { 1 ; 3 }