mn giảng giúp mình với chứ kiểu mình không hiểu. Mình cảm ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)
a: Thay x=2 và y=-3 vào (d), ta được:
\(2\left(2m-1\right)-2m+5=-3\)
=>\(4m-2-2m+5=-3\)
=>2m+3=-3
=>2m=-6
=>\(m=-\dfrac{6}{2}=-3\)
b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)
=>m=3/2
Thay m=3/2 vào (d), ta được:
\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)
y=2x+2 nên a=2
Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox
\(tan\alpha=2\)
=>\(\alpha\simeq63^026'\)
a) Để đường thẳng (d) đi qua gốc tọa độ thì m + 1 = 0 => m = 1
Vậy m=1 thì đường thẳng (d) đi qua gốc tọa độ
b) Thay x = 3; y = 4 vào đường thẳng (d) ta được:
4 = (m + 1).3 - 2m + 1
<=> 3m + 3 -2m +1 - 4 = 0
<=> m = 0
Vậy m = 0 thì đường thẳng (d) đi qua điểm A(3;4)
Sorry vì mik ko vẽ được đồ thị cho bạn
c) Đường thẳng vừa vẽ được: y = x + 1
Phương trình hoành độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
x + 1 = -2x + 4
<=> x + 2x = 4 - 1
<=> 3x = 3
<=> x = 1
Tung độ của 2 đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là:
y = 1 + 1
<=> y = 2
Vậy tọa độ giao điểm của đường thẳng y = x + 1 và đường thẳng y = -2x + 4 là (1;2)
Học tốt. Nhớ k cho mik nha.
Lời giải:
P/s: Làm nhưng k biết có đúng hay không!!! (^-^)
Gọi giao điểm mà đồ thị hàm số (y) cắt trục tung là A
Theo bài ra ta có hoành độ của A là 1
Vì A nằm trên trục tung nên hoành độ của A là 0
Do đó điểm A = ( 0 , 1 )
A thuộc đồ thị hàm số (y) nên: ⇒ (m+1)x -2m+1(d)\(\Rightarrow\)m = − 2
~Học tốt!~
a: Thay x=1 và y=5 vào (d), ta được:
2m+2m-3=5
=>4m-3=5
hay m=2
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx-2m+3=0\)
Để(P) tiếp xúc với (d) thì \(\left(-2m\right)^2-4\left(-2m+3\right)=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=0\)
=>m=-3 hoặc m=1
a) (d) đi qua điểm \(M\left(-3;1\right)\Rightarrow1=\left(2m-1\right).\left(-3\right)-4m+5\)
\(\Rightarrow1=-6m+3-4m+5\Rightarrow1=-10m+8\Rightarrow10m=7\Rightarrow m=\dfrac{7}{10}\)
\(\Rightarrow y=\dfrac{2}{5}x+\dfrac{11}{5}\)
b) Gọi \(A\left(x_A;y_A\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y_A=\left(2m-1\right)x_A-4m+5\)
\(\Rightarrow2mx_A-x_A-4m+5-y_A=0\Rightarrow2m\left(x_A-2\right)-\left(x_A+y_A-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_A+y_A-5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_A=2\\y_A=3\end{matrix}\right.\Rightarrow A\left(2;3\right)\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(2;3\right)\) cố định
a) Thay x=-3 và y=1 vào (d), ta được:
\(\left(2m-1\right)\cdot\left(-3\right)-4m+5=1\)
\(\Leftrightarrow-6m+3-4m+5=1\)
\(\Leftrightarrow-10m=-7\)
hay \(m=\dfrac{7}{10}\)
Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
Thay x=1 , y=6 vào đừng thẳng (d),ta được:
(2m-1).1+m-2=6
<=>2m-1+m-2=6
<=>3m=9
<=>m=3
b. Song song với đường thẳng 2x + 3y – 5 = 0.
Ta có : 2x + 3y -5 =0
<=>3y=-2x+5
<=>y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)
Để (d) // y=\(\frac{-2}{3}\)x+\(\frac{5}{3}\)Thì ;
\(\hept{\begin{cases}2m-1=\frac{-2}{3}\\m-2\ne\frac{5}{3}\end{cases}}\)<=>\(\hept{\begin{cases}2m=\frac{1}{3}\\m\ne\frac{5}{3}+2\end{cases}}\)<=>\(\hept{\begin{cases}m=\frac{1}{6}\\m\ne\frac{11}{3}\end{cases}}\)<=>m=\(\frac{1}{6}\)
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
Ta có : x + 2y +1 =0
<=>2y=-x-1
<=>y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)
Để (d) Vuông góc với y=\(\frac{-1}{2}\)x + \(\frac{-1}{2}\)thì:
(2m-1).\(\frac{-1}{2}\)=-1
<=>2m-1=2
<=>2m=3
<=>m=\(\frac{3}{2}\)
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
Gọi M(x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó ta có:
⇔ y0 = (2m - 1)x0 + m -2 với mọi m
⇔ y0 = 2mx0 - x0 + m -2 với mọi m
⇔ y0 - 2mx0 + x0 - m +2 = 0 với mọi m
⇔ m(-2x0 - 1) + (y0 + x\(_0\)+2) = 0 với mọi m
<=>\(\hept{\begin{cases}-2x_0-1=0\\y_0+x_0+2=0\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=0-2+\frac{-1}{2}\end{cases}}\)<=>\(\hept{\begin{cases}x_0=\frac{-1}{2}\\y_0=\frac{-5}{2}\end{cases}}\)
Vậy điểm cố định mà (d) luôn đi qua là M(\(\frac{-1}{2}\);\(\frac{-5}{2}\))