K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.

$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$

$=(n^4-1)(n^4-1)(n^4+1)$

$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$

$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$

$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$

Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2

$\Rightarrow [k(k+1)]^2\vdots 4$

Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$

$\Rightarrow A\vdots 64.4.2=512$ (đpcm)

1 tháng 8 2023

Đặt: \(A=n^8-n^6-n^4+n^2\)

\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)

\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)

\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)

\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)

\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3 

Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\) 

Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn 

Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8 

Còn  \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\) 

Ta có: 

\(\text{Ư}\text{C}LN\left(9;128\right)=1\)

Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)

NV
5 tháng 5 2021

Đặt \(A=n^4-10n^2+9\)

\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)

Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3

\(\Rightarrow A⋮3\)

Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Do n lẻ, đặt \(n=2k+1\)

\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8

\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)

Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)

25 tháng 1 2022

Thầy ơi cho em hỏi tại sao A lại chia hết cho 16.8 ạ ?? Thầy có thể giải thích được không ạ ?

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.

Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$

$\Rightarrow n^4+5n^2+9\vdots 11$

$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$

$\Rightarrow n^4-6n^2+9\vdots 11$

$\Rightarrow (n^2-3)^2\vdots 11$

$\Rightarrow n^2-3\vdots 11$

Đặt $n^2-3=11k$ với $k$ nguyên

Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)

Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$

6 tháng 9 2017

P.s cái đề b/s thêm n nguyên

Xét \(n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right).\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Do (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp => chia hết cho 40

Lại có n lẻ => (n-1)(n+1) là tích của 2 số chẵn liên tiếp nên chia hết cho 8

=>5(n-1)n(n+1) chia hết cho 40

\(\Rightarrow n\left(n^4-1\right)⋮40\Leftrightarrow n^4-1⋮40\)(Vì n lẻ, n không chia hết cho 5)

6 tháng 9 2017

DO N KHÔNG CHIA HẾT CHO 5 MÀ SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0 , 1 , 4

=> n^2 CHIA 5 DƯ 1 HOẶC 4

=> n^4 CHIA 5 DƯ 1 => n^4 - 1 chia hết cho 5

DO N LÀ SỐ LẺ MÀ SỐ CHÍNH PHƯƠNG CHIA 8 DƯ 0,1 HOẶC 4

=> n^2 chia 5 dư 1 hoặc 4

=> n^4 chia 8 dư 1

=> n^4 chia hết cho 8

Mà 5 và 8 nguyên tố cùng nhau

=> n^4 - 1 chia hết cho 40

31 tháng 10 2015

n=3 thì sai ...

Nếu theo mik nghĩ thì đề đúng là n lẻ và chia 3 số dư khác 0 

n4-1=(n-1)(n3+n2+n+1)

      =(n-1)(n+1)(n2+1)

=> nếu số dư là 1,2 => đpcm