K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

P.s cái đề b/s thêm n nguyên

Xét \(n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right).\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5\left(n-1\right)n\left(n+1\right)\)

Do (n-2)(n-1)n(n+1)(n+2) là tích của 5 số nguyên liên tiếp => chia hết cho 40

Lại có n lẻ => (n-1)(n+1) là tích của 2 số chẵn liên tiếp nên chia hết cho 8

=>5(n-1)n(n+1) chia hết cho 40

\(\Rightarrow n\left(n^4-1\right)⋮40\Leftrightarrow n^4-1⋮40\)(Vì n lẻ, n không chia hết cho 5)

6 tháng 9 2017

DO N KHÔNG CHIA HẾT CHO 5 MÀ SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0 , 1 , 4

=> n^2 CHIA 5 DƯ 1 HOẶC 4

=> n^4 CHIA 5 DƯ 1 => n^4 - 1 chia hết cho 5

DO N LÀ SỐ LẺ MÀ SỐ CHÍNH PHƯƠNG CHIA 8 DƯ 0,1 HOẶC 4

=> n^2 chia 5 dư 1 hoặc 4

=> n^4 chia 8 dư 1

=> n^4 chia hết cho 8

Mà 5 và 8 nguyên tố cùng nhau

=> n^4 - 1 chia hết cho 40

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.

$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$

$=(n^4-1)(n^4-1)(n^4+1)$

$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$

$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$

$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$

Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2

$\Rightarrow [k(k+1)]^2\vdots 4$

Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$

$\Rightarrow A\vdots 64.4.2=512$ (đpcm)

29 tháng 10 2015

a) \(n^3-4n=n\left(n^2-4\right)=\left(n-2\right)n\left(n+2\right)\)

vì n chẵn nên đặt n=2k

\(=>\left(2k-2\right).2k.\left(2k+2\right)=8\left(k-1\right)k\left(k+1\right)\)

vì \(\left(k-1\right)k\left(k+1\right)\)là 3 số tn liên tiếp =>chia hết cho 2

=>\(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16

\(n^3+4n=n^3-4n+8n\)

đặt n=2k

=>\(8\left(k-1\right)k\left(k+1\right)+16k\)

mà \(8\left(k-1\right)k\left(k+1\right)\)chia hết cho 16 nên \(8\left(k-1\right)k\left(k+1\right)+16k\)chia hết cho 16

26 tháng 2 2022

Ta có: n5−n=n(n4−1)=n(n−1)(n+1)(n2+1)

CM n5−n⋮3

Ta thấy n,n+1,n−1 là ba số nguyên liên tiếp nên chắc chắn tồn tại một số chia hết cho 3

⇒n(n−1)(n+1)⋮3⇔n5−n⋮3(1)

CM n5−n⋮5

+) n≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡1(mod5)⇒n−1≡0(mod5)⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡2(mod5)⇒n2≡4(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡3(mod5)⇒n2≡9(mod5)⇒n2+1≡0(mod5)

⇒n5−n=n(n−1)(n+1)(n2+1)⋮5

+) n≡4(mod5)⇒n+1≡0(mod5)

⇒n5−n=n(n+1)(n−1)(n2+1)⋮5

Do đó, n5−n⋮5(2)

CM n5−n⋮16

Vì n lẻ nên đặt n=4k+1;4k+3 Khi đó:[n2=16k2+1+8kn2=16k2+9+24k⇒ n2≡1(mod8)

⇒n2−1⋮8

Mà n lẻ nên n2+1⋮2

Do đó n5−n=n(n2−1)(n2+1)⋮16(3)

Từ (1),(2),(3)⇒n5−n⋮(16.3.5=240) (đpcm)

Chúc bạn học tốt!

10 tháng 7 2018

ai làm dược bài 1 mình tích cho

2 tháng 9 2018

Bài 1 : a . Sử dụng công thúc sau : a^n - b^n = ( a-b ) ( a^n-1 + a^n-2 . b + .....+ b^n-1 )

=> A = 21^5 - 1 chia hết cho 20 

=> A = 21^10 - 1 chia hết 400

=> A= 21^10 - 1 chia hết cho 200

6 tháng 11 2015

tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé

24 tháng 4 2020

Bài này dễ mà bn

8 tháng 1 2021

Ta có: \(\hept{\begin{cases}m^2+2⋮n\\n^2+2⋮m\end{cases}}\Rightarrow\left(m^2+2\right)\left(n^2+2\right)⋮mn\Rightarrow m^2n^2+2\left(m^2+n^2+2\right)⋮mn\)

Dễ có \(m^2n^2⋮mn\)nên \(2\left(m^2+n^2+2\right)⋮mn\)

Mà m,n lẻ nên mn lẻ hay \(\left(mn,2\right)=1\)suy ra \(m^2+n^2+2⋮mn\)(*)

Ta có đánh giá rằng số chính phương lẻ thì chia 4 dư 1 (Thật vậy xét các trường hợp 4k + 1 và 4k + 3)

\(\Rightarrow\)m2, n2 chia 4 dư 1 \(\Rightarrow m^2+n^2+2⋮4\)(**)

Từ (*) và (**) suy ra \(m^2+n^2+2⋮4mn\)(Do \(\left(mn,4\right)=1\))