Tìm số giá trị nguyên của tham số m thuộc khoảng (-2;2018) để hàm số y = 1 3 m x 3 − m − 1 x 2 + 3 m − 2 x + 1 3 đồng biến trên nửa khoảng 2 ; + ∞
A. 2018
B. 2017
C. 2019
D. 2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
⇒ * luôn có hai nghiệm phân biệt x 1 ; x 2 x 1 < x 2 với mọi m.
Áp dụng hệ thức Vi-ét ta có:
Vậy có tất cả 1001 giá trị m thỏa mãn bài toán.
Chọn B.
Chọn B
Phương pháp:
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Ta sử dụng phương trình có hai nghiệm dương phân biệt
Cách giải:
Ta có
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Khi đó
Mà nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.
Chọn B
Phương pháp:
Tính y'.
Tìm m để
Cách giải:
Ta có
Xét phương trình y' = 0 có
Suy ra phương trình y' = 0 luôn có hai nghiệm
Dễ thấy trong khoảng thì hàm số đồng biến.
Bài toán thỏa
Do
Vậy có giá trị của m thỏa mãn bài toán.
Chú ý:
Cách khác: Tìm m để
Theo định lí Viet, ta có
Hàm số đồng biến trên ( 2 ; + ∞ ) ⇔ phương trình y' = 0 có hai nghiệm
Vậy có 1001 số nguyên m thuộc khoảng (-10000;10000)
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm