K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2022

Cách làm 2 câu tương tự nhau.

a.

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận (3;-2) là 1 vtpt

Phương trình AB (qua A) có dạng:

\(3\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow3x-2y-1=0\)

\(\overrightarrow{HA}=\left(1;1\right);\overrightarrow{HB}=\left(3;4\right)\)

Do BC vuông góc AH nên nhận (1;1) là 1 vtpt

Phương trình BC (đi qua B) có dạng:

\(1\left(x-3\right)+1\left(y-4\right)=0\Leftrightarrow x+y-7=0\)

Do AC vuông góc HB nên nhận (3;4) là 1 vtpt

Phương trình AC (đi qua A) có dạng:

\(3\left(x-1\right)+4\left(y-1\right)=0\Leftrightarrow3x+4y-7=0\)

Câu b hoàn toàn tương tự

NV
12 tháng 4 2020

d/

Trung trực của BC đi qua \(M\left(\frac{3}{2};4\right)\) và vuông góc BC nên nhận \(\left(-1;2\right)\) là 1 vtpt

Phương trình trung trực BC:

\(-1\left(x-\frac{3}{2}\right)+2\left(y-4\right)=0\Leftrightarrow-x+2y-\frac{13}{2}=0\)

e/ \(\overrightarrow{AB}=\left(4;2\right)\Rightarrow AB=2\sqrt{5}\)

\(\overrightarrow{AC}=\left(3;4\right)\Rightarrow AC=5\)

Gọi D là chân đường phân giác trong góc A trên BC

Theo định lý phân giác: \(\frac{DB}{AB}=\frac{DC}{AC}\Rightarrow DB=\frac{AB}{AC}DC=\frac{2\sqrt{5}}{5}DC\)

\(\Rightarrow\overrightarrow{DB}=-\frac{2\sqrt{5}}{5}\overrightarrow{DC}\)

\(\Rightarrow\overrightarrow{DC}=\left(5-2\sqrt{5}\right)\overrightarrow{BC}=\left(-5+2\sqrt{5};10-4\sqrt{5}\right)\)

\(\Rightarrow D\left(6-2\sqrt{5};-5+4\sqrt{5}\right)\)

\(\Rightarrow\overrightarrow{AD}=\left(8-2\sqrt{5};-6+4\sqrt{5}\right)\)

Đường thẳng AD nhận \(\left(6-4\sqrt{5};8-2\sqrt{5}\right)\) là 1 vtpt

Phương trình AD:

\(\left(6-4\sqrt{5}\right)\left(x+2\right)+\left(8-2\sqrt{5}\right)\left(y-1\right)=0\)

Bạn tự rút gọn, số xấu quá

NV
12 tháng 4 2020

a/ \(\overrightarrow{BC}=\left(-1;2\right)\)

\(\Rightarrow\) Đường thẳng BC nhận \(\left(2;1\right)\) là 1 vtpt

Phương trình BC:

\(2\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow2x+y-7=0\)

b/ \(AH\perp BC\) nên đường thẳng AH nhận \(\left(-1;2\right)\) là 1 vtpt

Phương trình AH:

\(-1\left(x+2\right)+2\left(y-1\right)=0\Leftrightarrow-x+2y-4=0\)

c/ Gọi M là trung điểm BC \(\Rightarrow M\left(\frac{3}{2};4\right)\)

\(\Rightarrow\overrightarrow{AM}=\left(\frac{7}{2};3\right)=\frac{1}{2}\left(7;6\right)\Rightarrow\) đường thẳng AM nhận \(\left(6;-7\right)\) là 1 vtpt

Phương trình AM:

\(6\left(x+2\right)-7\left(y-1\right)=0\Leftrightarrow6x+7y+19=0\)

26 tháng 4 2020

ai biêt

21 tháng 3 2021

undefined