Giúp tớ làm bài này nhé :
cho x,y,z là 3 số thực thuộc (0;1], Chứng minh:
\(y=\frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\le\frac{5}{x+y+z}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{1) -5x - (-3)= 13}\)
\(\Rightarrow-5x=10\)
\(x=10:-5\)
\(x=-2\)
\(\text{2) |x-3| - 7= 13}\)
\(\Rightarrow|x-3|=20\)
\(\Rightarrow\orbr{\begin{cases}x-3=20\\x-3=-20\end{cases}\Leftrightarrow\orbr{\begin{cases}x=23\\x=-17\end{cases}}}\)
\(\text{3) 17- (43 - |x|)= 45}\)
\(\Rightarrow43-|x|=-28\)
\(|x|=71\)
\(\Rightarrow\orbr{\begin{cases}x=71\\x=-71\end{cases}}\)
\(\text{5) (x-2).(x+15)= 0}\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-15\end{cases}}}\)
4,\(\text{4) (x-3).(x-5) < 0}\)\(\left(x-3\right).\left(x-5\right)< 0\)
\(\Rightarrow\left(x-3\right)\)và \(\left(x-5\right)\)trái dấu
Mà \(\left(x-3\right)>\left(x-5\right)\Rightarrow\left(x-3\right)>0\)và \(\left(x-5\right)< 0\)
\(+,x-3>0\Rightarrow x>3\)
\(+,x-5< 0\Rightarrow x< 5\)
\(\Rightarrow3< x< 5\)
\(\)Mà \(x\in Z\)
\(\Rightarrow x=4\)
học tốt
1<=>-5x+3=13
<=>-5x=10
<=>x=-2
2<=>|x-3|=20
th1:x-3=20
<=>x=23
th2:x-3=-20
<=>x=-17
3,<=>17-43+|x|=45
<=>|x|=71
th1:x=71
th2:x=-71
4<=>x-3<0 x-5>0
<=>x<3 x>5(loại vì ko có số naod vừa lớn hơn 5 và nhỏ hơn 3)
<=>x-3>0 x-5<0
<=>x>3 x<5
=>3<x<5
5,<=>x-2=0 x+15=0
<=>x=2 x=-15
https://www.youtube.com/channel/UCb2H-q6FmW61PgcsL1OGPfw ủng hộ bạn t:))
ý bạn là \(x-y-z=-33?\)
Ta có \(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y-z}{15-10-6}=\dfrac{-33}{-1}=33\\ \Rightarrow\left\{{}\begin{matrix}x=33\cdot15=495\\y=33\cdot10=330\\z=33\cdot6=198\end{matrix}\right.\)
Bạn ơi đề yêu cầu là : Chứng minh rằng : Tam giác xyz là TAM GIÁC CÂN ? Chứng minh rằng: Tam giác xyz là TAM GIÁC CÂN