Cho \(\tan\alpha=3;0^0\le\alpha\le90^0\)
tính: \(A=5\sin\alpha-7\cos^2\alpha+9\cot^2\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}{\dfrac{sina}{cosa}-\dfrac{3cosa}{sina}}=\dfrac{sin^2a+cos^2a}{sin^2a-3cos^2a}=\dfrac{1}{sin^2a-3\left(1-sin^2a\right)}=\dfrac{1}{4sin^2a-3}=\dfrac{1}{4.\left(\dfrac{1}{3}\right)^2-3}=...\)
\(0< a< 90^0\)
=>\(sina>0\)
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{9}{16}=\dfrac{7}{16}\)
=>\(sina=\dfrac{\sqrt{7}}{4}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\sqrt{7}}{4}:\dfrac{3}{4}=\dfrac{\sqrt{7}}{3}\)
\(cota=\dfrac{1}{tana}=\dfrac{3}{\sqrt{7}}\)
\(A=\dfrac{tana+3cota}{tana+cota}=\dfrac{\dfrac{\sqrt{7}}{3}+\dfrac{9}{\sqrt{7}}}{\dfrac{3}{\sqrt{7}}+\dfrac{\sqrt{7}}{3}}\)
\(=\dfrac{34}{3\sqrt{7}}:\dfrac{16}{3\sqrt{7}}=\dfrac{17}{8}\)
sin a=3/5
=>cos a=4/5
tan a=3/5:4/5=3/4; cot a=1:3/4=4/3
M=(4/3+3/4):(4/3-3/4)=25/7
\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)
\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)
\(cos2a=2cos^2a-1=-\frac{1}{2}\)
\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)
1) \(tan\alpha=\dfrac{2}{3}\)
Mà: \(tan\alpha\cdot cot\alpha=1\)
\(\Rightarrow cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{1}{\dfrac{2}{3}}=\dfrac{3}{2}\)
Và: \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(\Rightarrow cos^2\alpha=\dfrac{1}{1+tan^2\alpha}\)
\(\Rightarrow cos\alpha=\sqrt{\dfrac{1}{1+tan^2\alpha}}=\sqrt{\dfrac{1}{1+\left(\dfrac{2}{3}\right)^2}}=\dfrac{3\sqrt{13}}{13}\)
Lại có:
\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(\Rightarrow sin\alpha=tan\alpha\cdot cos\alpha=\dfrac{2}{3}\cdot\dfrac{3\sqrt{13}}{13}=\dfrac{2\sqrt{13}}{13}\)
Tham khảo:
\(E=\frac{cot\alpha+3tan\alpha}{2cot\alpha+tan\alpha}\\ E=\frac{1+3tan^2\alpha}{2+tan^2\alpha}\\ E=\frac{3\left(tan^2\alpha+1\right)-2}{1+\left(1+tan^2\alpha\right)}\\ E=\frac{\frac{3}{cos^2\alpha}-2}{\frac{1}{cos^2\alpha}+1}\\ E=\frac{3-2cos^2\alpha}{1+cos^2\alpha}\\ E=\frac{19}{13}\)
1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)
\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)
\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)
\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)
\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)
1: \(cota=\sqrt{5}\)
=>\(cosa=\sqrt{5}\cdot sina\)
\(1+cot^2a=\dfrac{1}{sin^2a}\)
=>\(\dfrac{1}{sin^2a}=1+5=6\)
=>\(sin^2a=\dfrac{1}{6}\)
\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)
\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)
2: tan a=3
=>sin a=3*cosa
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)
\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)
\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)
\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)
\(\cot a=\dfrac{1}{3}\)
\(1+\tan^2a=\dfrac{1}{\cos^2a}=1+9=10\)
\(\Leftrightarrow\cos a=\dfrac{\sqrt{10}}{10}\)
\(\Leftrightarrow\sin a=\dfrac{3\sqrt{10}}{10}\)
\(A=5\cdot\dfrac{3\sqrt{10}}{10}-7\cdot\dfrac{1}{10}+9\cdot\dfrac{1}{9}=\dfrac{3\sqrt{10}}{2}-\dfrac{7}{10}+1=\dfrac{3+15\sqrt{10}}{10}\)