Hình chữ nhật ABCD có \(I\left(\dfrac{1}{2};0\right)\). AB có pt: \(x-2y+2=0\) và AB=2AD. Tìm tọa độ điểm A,B,C,D biết A có hoành độ âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Trên tia đối tia $CB$ lấy $N$ sao cho $CB=CN$
\(|\overrightarrow{MC}+\overrightarrow{BC}|=|\overrightarrow{MC}+\overrightarrow{CN}|=|\overrightarrow{MN}|\)
Xét tam giác $BMC$ và $ADI$ có:
$\widehat{B}=\widehat{A}=90^0$
$\widehat{D}=\widehat{M}$ (cùng bù $\widehat{AMC})$
Do đó 2 tam giác này đồng dạng
$\Rightarrow \frac{BM}{BC}=\frac{AD}{AI}$
$\Rightarrow BM=BC.\frac{AD}{AI}=\frac{2BC^2}{AB}=\frac{3\sqrt{2}a}{4}$
$BN=2BC=a\sqrt{3}$
Do đó, áp dụng định lý Pitago:
$|\overrightarrow{MN}|=MN=\sqrt{BM^2+BN^2}=\frac{\sqrt{66}a}{4}$
đề như thế thì đương nhiên phải có điều kiện đó chứ em, đề đúng rồi anh xin xóa câu trl
1. ĐKXĐ: \(a,b,c\) đôi một khác nhau.
\(\dfrac{\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\dfrac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}\left(\dfrac{x-b}{a-c}-\dfrac{x-a}{b-c}\right)=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(x-b\right)\left(b-c\right)-\left(x-a\right)\left(a-c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-cx-b^2+bc-\left(ax-cx-a^2+ac\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{bx-b^2+bc-ax+a^2-ac}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{x\left(b-a\right)+c\left(b-a\right)-\left(b-a\right)\left(a+b\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{x-c}{a-b}.\dfrac{\left(b-a\right)\left(x-a-b+c\right)}{\left(a-c\right)\left(b-c\right)}=1\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-1=0\)
⇔\(\dfrac{\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}-\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
⇔\(\left(x-c\right)\left(a-b\right)\left(x-a-b+c\right)-\left(a-b\right)\left(b-c\right)\left(c-a\right)=0\)
⇔\(\left(a-b\right)\left[\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)\right]=0\)
⇔\(a-b=0\) (loại do \(a\ne b\)) hay \(\left(x-c\right)\left(x-a-b+c\right)-\left(b-c\right)\left(c-a\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-\left(bc-ab-c^2+ac\right)=0\)
⇔\(x^2-ax-bx+cx-cx+ac+bc-c^2-bc+ab+c^2-ac=0\)
⇔\(x^2-ax-bx+ab=0\)
⇔\(x\left(x-a\right)-b\left(x-a\right)\)
⇔\(\left(x-a\right)\left(x-b\right)=0\)
⇔\(x=a\) hay \(x=b\)
-Vậy \(S=\left\{a;b\right\}\)
Vì \(AB//CF\) ,áp dụng định lí Talet:
\(\dfrac{AE}{EF}=\dfrac{BE}{EC}\Rightarrow\dfrac{AE}{AF}=\dfrac{BE}{BC}\Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{BE^2}{BC^2}\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2-AB^2}{BC^2}=\dfrac{AE^2}{BC^2}-\left(\dfrac{AB}{BC}\right)^2\left(pytago\right)\\ \Rightarrow\dfrac{AE^2}{AF^2}=\dfrac{AE^2}{BC^2}-9=\dfrac{AE^2}{\dfrac{1}{9}AB^2}-9\\ \Rightarrow\dfrac{AE^2}{AF^2}+9=\dfrac{9AE^2}{AB^2}\\ \Rightarrow\dfrac{1}{AF^2}+\dfrac{9}{AE^2}=\dfrac{9}{AB^2}\)
Lời giải:
$S_{ABC}=AB\times BC:2=30\times 16:2=240$ (cm2)
$S_{ADC}=AD\times DC:2=16\times 30:2=240$ (cm2)
\(\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}=\frac{2}{3}\)
\(\Rightarrow S_{AMC}=\frac{2}{3}\times S_{ABC}=\frac{2}{3}\times 240=160\) (cm2)
\(S_{AMCD}=S_{ADC}+S_{AMC}=240+160=400\) (cm2)