Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: Xét ΔADC vuông tại D có DH là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}AD^2=AH\cdot AC\\DC^2=CH\cdot CA\end{matrix}\right.\)
\(\Leftrightarrow\left(\dfrac{BC}{DC}\right)^2=\dfrac{AH}{CH}\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông đối với tam giác vuông $AHB$, đường cao $HE$:
$EA.EB=HE^2$
Tương tự: $FA.FC=HF^2$
$\Rightarrow EA.EB+FA.FC=HE^2+HF^2=EF^2(1)$ (định lý Pitago)
Mặt khác: Dễ thấy $HEAF$ là hình chữ nhật do có 3 góc $\widehat{E}=\widehat{A}=\widehat{F}=90^0$
$\Rightarrow EF=HA$
$\Rightarrow EF^2=HA^2(2)$
Áp dụng hệ thức lượng trong tam giác vuông $ABC$:
$AH^2=HB.HC(3)$
Từ $(1);(2); (3)\Rightarrow EA.EB+FA.FC=HB.HC$ (đpcm)
a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)
\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)
\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)
c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)
\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)
Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)
\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)
\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)
\(\Rightarrow BC.BE.CF=AH^3\)
e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)
f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)
\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)
\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)
\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)
\(=\left(BH+CH\right)^2=BC^2\)
a) Ta có: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{HC}\)
b) Ta có: \(\left(\dfrac{CA}{AB}\right)^4=\left(\dfrac{CA^2}{AB^2}\right)^2=\left(\dfrac{CH.BC}{BH.BC}\right)^2=\dfrac{CH^2}{BH^2}=\dfrac{CE.CA}{BD.BA}\)
\(=\dfrac{CE}{BD}.\dfrac{CA}{BA}\Rightarrow\left(\dfrac{CA}{AB}\right)^3=\dfrac{CE}{BD}\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BD.BA.CE.CA=BD.CE\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow BD.CE.BC=AH^3\)
d) Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow AH=DE\Rightarrow AH^2=DE^2=DH^2+HE^2\)
Ta có: \(3AH^2+BD^2+CE^2=2AH^2+\left(DH^2+BD\right)^2+\left(HE^2+CE^2\right)\)
\(=2.HB.HC+BH^2+CH^2=\left(BH+CH\right)^2=BC^2\)
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
Bài 2:
a: Xét ΔABC vuông tại B có
\(AB^2+BC^2=AC^2\)
hay BC=20(cm)
Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}BA^2=AH\cdot AC\\BC^2=CH\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)