K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2023

xét △ABM và △ACM có

AB=AC (theo giả thiết)

\(\widehat{B}\) = \(\widehat{C}\) (theo giả thiết)

MB=MC (theo giả thiết)

⇒△ABM=△ACM (c.g.c)

\(\widehat{AMB}\) = \(\widehat{AMC}\) (hai góc tương ứng)

ABC

16 tháng 3 2023

A B C

31 tháng 8 2021

Bài 1 : a) M là trung điểm AB 

                N là trung điểm AC 

         suy ra : MN là Đường trung bình của tam giác ABC 

         suy ra : MN // BC ; MN = BC/2

b) Ta có : MN // BC và M là trung điểm AB 

    Mà AD cắt MN tại I nên từ đó suy ra : I là trung điểm của cạnh AD 

em chỉ giải được bài 1 thôi nên thông cảm ạ

  

           

17 tháng 9 2023

Tam giác ABC vuông cân tại A nên \(\widehat A = 90^\circ ;\widehat B = \widehat C; AB = AC\).

Tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat C = 90:2 = 45^\circ \).

Xét tam giác ABM và tam giác ACM có:

AB = AC

AM chung

BM = CM

\(\Rightarrow \Delta ABM = \Delta ACM\) (c.c.c)

\(\Rightarrow \widehat {BAM} = \widehat {CAM}\) (2 góc tương ứng)

Mà \(\widehat {BAM} + \widehat {CAM}=\widehat{BAC}=90^0\)

\(\Rightarrow \widehat {BAM} = \widehat {CAM} = 90:2 = 45^\circ \).

Xét tam giác MAB: \(\widehat {MBA} = \widehat {BAM} = 45^\circ  \Rightarrow \widehat {BMA} = 90^\circ ;MB = MA\).

Vậy tam giác MAB vuông cân tại M.

12 tháng 2 2018

Vì tam giác ABC cân tại A suy ra AB=AC

Vì M là trung điểm BC suy ra BM=CM

Xét tam giác AMB và tam giác AMC có

AB=AC

cạnh AM chung

BM=CM

suy ra tam giác AMB =tam giác AMC (c.c.c)

suy ra góc AMC=góc AMB(hai góc tương ứng)

Mà góc AMC+góc AMB=180 độ

suy ra góc AMC bằng góc AMB=90 độ

suy ra AM vuông góc với BC

12 tháng 2 2018

ghi cái định lí Pain vào vở đê

định lĩ six path or Pain : trong tam giác Cân đường trung tuyến ở đỉnh góc cân cắt cạnh đối diện tại 1 điểm bất kì thì suy ra nó vừa là trung tuyến Phân giác trung trực "

14 tháng 9 2021

\(1,\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN=\dfrac{1}{2}BC.hay.2MN=BC\)

\(2,\) Vì \(MN//BC\left(t/c.đtb\right)\Rightarrow MNCB\) là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\)

\(\Rightarrow MNCB\) là hthang cân

\(3,\left\{{}\begin{matrix}\widehat{MNO}=\widehat{OCB}\\\widehat{NMO}=\widehat{OBC}\end{matrix}\right.\Rightarrow\Delta MNO\sim\Delta COB\left(g.g\right)\\ \Rightarrow\dfrac{MN}{BC}=\dfrac{MO}{OC}\Rightarrow\dfrac{2MI}{2CK}=\dfrac{MO}{OC}\Rightarrow\dfrac{MI}{CK}=\dfrac{MO}{OC}\)

Lại có \(\widehat{IMO}=\widehat{OCK}\left(so.le.trong\right)\)

\(\Rightarrow\Delta IMO\sim\Delta KCO\left(c.g.c\right)\)

Do đó \(\widehat{MOI}=\widehat{KOC}\Rightarrow I;O;K\) thẳng hàng \(\left(1\right)\)

Chứng minh tương tự, ta được \(\Delta MAI\sim\Delta BAK\Rightarrow\widehat{AHE}=\widehat{BHF}\Rightarrow A;I;K\) thẳng hàng \(\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow A;I;O;K\) thẳng hàng 

14 tháng 9 2021

1) Xét ΔABC cân tại A, có:

M là trung điểm của AB, N là trung điểm của AC

⇒ MN là đường trung bình ΔABC

⇒ MN = 1/2BC ⇒ BC = 2MN (ĐPCM)

2) Xét tứ giác MNCB, có:

MN // BC(MN là đường trung bình)

MB = NC (do AB = AC và M, N là trung điểm AB, AC)

⇒ MNCB là hình thang.

mà:

\(\widehat{MBC}=\widehat{NCB}\) (do ΔABC cân tại A)

⇒ MNCB là hình thang cân.

d. Xét ΔAMN, có:

\(\widehat{AMN}=\widehat{ANM}\) (đồng vị so với \(\widehat{ABC},\widehat{ACB}\))

⇒ ΔAMN cân tại A, mà AI ⊥ MN (do MN là cạnh đáy, I là trung điểm MN) ⇒ A,I thẳng hàng 

Chứng minh tương tự cho tam giác ABC với BC là cạnh đáy có K là trung điểm, ta được A, I, K thẳng hàng (1)

Có ΔMON cân, do \(\widehat{ONM}=\widehat{OMN}\) vì \(\widehat{BMN}=\widehat{CNM}\) ⇒ OI thẳng hàng do I là trung điểm cạnh đáy MN của tam giác cân. (2)

Từ (1) và (2) ⇒ A, I, O, K thẳng hàng.

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$AM$ chung 

$BM=CM$ (do $M$ là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)

$\Rightarrow \widehat{AMB}=\widehat{AMC}$ 

Mà $\widehat{AMB}+\widehat{AMC}=180^0$ nên $\widehat{AMB}=\widehat{AMC}+90^0$

$\Rightarrow AM\perp BC$

Xét tam giác $ABM$ vuông tại $M$, áp dụng định lý Pitago:

$BM=\sqrt{AB^2-AM^2}=\sqrt{13^2-12^2}=5$

$BC=2BM=2.5=10$ 

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Hình vẽ: