Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\Delta\) ABC cân tại A (gt) \(\Rightarrow\) AB = AC ; \(\widehat{B}\) = \(\widehat{C}\)
Xét \(\Delta\) ABM và \(\Delta\) ACM, có:
BM = CM (vì M là trung điểm của BC)
\(\widehat{B}\) = \(\widehat{B}\) (cmt)
AB = AC (cmt)
\(\Rightarrow\) \(\Delta\) ABM = \(\Delta\) ACM (c.g.c)
\(\Rightarrow\widehat{M_1}\) = \(\widehat{M_2}\) (2 góc tương ứng)
Ta có: \(\widehat{M_1}\) + \(\widehat{M_2}\) = 180o (2 góc kề bù)
\(\Rightarrow M_1\) = \(\widehat{M_2}\) = \(\dfrac{180^o}{2}\) = 90o
Áp dụng định lý Py-ta-go cho tam giác ABM và tam giác ACM cùng vuông tại M, ta có:
AB2 = AM2 + BM2
\(\Rightarrow\) BM2 = AB2 - AM2
BM2 = 132 - 122
BM2 = 169 - 144
BM2 = 25
\(\Rightarrow\) BM = 5
\(\Rightarrow\) BC = BM + CM = 2BM = 5.2 = 10 (cm)
Vậy BC = 10 cm
_Yorin_
Lời giải:
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ cân tại $A$)
$AM$ chung
$BM=CM$ (do $M$ là trung điểm $BC$)
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
$\Rightarrow \widehat{AMB}=\widehat{AMC}$
Mà $\widehat{AMB}+\widehat{AMC}=180^0$ nên $\widehat{AMB}=\widehat{AMC}+90^0$
$\Rightarrow AM\perp BC$
Xét tam giác $ABM$ vuông tại $M$, áp dụng định lý Pitago:
$BM=\sqrt{AB^2-AM^2}=\sqrt{13^2-12^2}=5$
$BC=2BM=2.5=10$
c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có
AN chung
\(\widehat{KAN}=\widehat{QAN}\)
Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)
Suy ra: AK=AQ(hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM};\widehat{AMB}=\widehat{AMC}\)
\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
\(\widehat{BAM}=\widehat{CAM}\)
AM nằm giữa AB,AC
Do đó: AM là phân giác của \(\widehat{BAC}\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
\(\widehat{MBA}=\widehat{MCD}\)
Do đó: ΔMBA=ΔMCD
=>MA=MD
=>M là trung điểm của AD
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>BD//AC
BD//AC
AC\(\perp\)BH
Do đó: BD\(\perp\)BH
=>\(\widehat{HBD}=90^0\)
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC