cho N(1;-1) ,Mϵ▲:-x+y+1=0 tìm M sao cho diện tích tam giác OMN =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
a/ \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để n + 2 chia hết cho n - 1 thì 3 phải chia hết cho n - 1 hay n -1 phải là ước của 3
=> n - 1 = {-3; -1; 1; 3} => n = {-2; 0; 2; 4}
b/ \(\frac{2n+7}{n+1}=\frac{2n+2+5}{n+1}=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\)
Để 2n + 7 chia hết cho n + 1 thì 5 phải chia hết cho n +1 hay n +1 phải là ước của 5
=> n + 1 = {-5; -1; 1; 5} => n = {-6; -2; 0; 4}
Các câu còn lại làm tương tự
a: =>n-1+5 chia hết cho n-1
=>\(n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{2;0;6;-4\right\}\)
b: =>n^2+2n+1-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: =>3n-6+5 chiahết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
a,(n+4) \(⋮\) (n-1) \(\Leftrightarrow\) n -1 + 5 \(⋮\) (n-1) \(\Leftrightarrow\) 5 \(⋮\) n - 1 \(\Leftrightarrow\) n-1 \(\in\) { -5; -1; 1; 5} \(\Leftrightarrow\)n\(\in\){-4;0;2;6}
b,Theo Bezout n2 +2n - 3 \(⋮\) n + 1 \(\Leftrightarrow\) (-1)2 + 2(-1) - 3 \(⋮\) n+1
\(\Leftrightarrow\) -4 \(⋮\) n+1 \(\Leftrightarrow\) n+1 \(\in\) { -4; -1; 1; 4} \(\Leftrightarrow\) n \(\in\) { -5; -2; 0; 3}
c, 3n -1 \(⋮\) n-2 \(\Leftrightarrow\) 3(n-2) + 5 \(⋮\) n-2 \(\Leftrightarrow\) 5 \(⋮\) n-2 \(\Leftrightarrow\) n-2 \(\in\) { -5; -1; 1; 5}
n \(\in\) { -3; 1; 3; 7}
d, 3n + 1 \(⋮\) 2n - 1
\(\Leftrightarrow\)2.(3n+1) \(⋮\) 2n -1
\(\Leftrightarrow\) 6n + 2 \(⋮\) 2n - 1
\(\Leftrightarrow\) 6n - 3 + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 3.(2n-1) + 5 \(⋮\) 2n-1
\(\Leftrightarrow\) 5 \(⋮\) 2n - 1
\(\Leftrightarrow\) 2n - 1 \(\in\) { -5; -1; 1; 5}
\(\Leftrightarrow\) n \(\in\) { -2; 0; 1; 3}
Để mình giúp bạn!!
\(n^2+n+1⋮n+1\\ \Rightarrow n\left(n+1\right)+1⋮n+1\\ \Rightarrow n+1\in U\left(1\right)=\left\{1;-1\right\}\\ \Rightarrow n\in\left\{0;-2\right\}\)
\(n^2+5⋮n+1\\ \Rightarrow n^2-1+6⋮n+1\\ \Rightarrow\left(n-1\right)\left(n+1\right)+6⋮n+1\\ \Rightarrow6⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(6\right)=\left\{1;6;-1;-6\right\}\\ \Rightarrow n=\left\{0;5;-2;-7\right\}\)
\(n+2⋮n^2-3\\ \Rightarrow n^2-3-1⋮n^2-3\\ \Rightarrow1⋮n^2-3\\ \)
bạn giải đc câu nào chưa
Nếu bạn giải đc rồi thì giải hộ mik đc k ? Nha bạn
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
\(\overrightarrow{ON}=\left(1;-1\right)\Rightarrow ON=\sqrt{2}\)
\(S_{OMN}=\dfrac{1}{2}d\left(M;ON\right).ON=3\Rightarrow d\left(M;ON\right)=\dfrac{6}{ON}=3\sqrt{2}\)
Phương trình ON:
\(1\left(x-0\right)+1\left(y-0\right)=0\Leftrightarrow x+y=0\)
M thuộc \(\Delta\) nên tọa độ có dạng: \(M\left(m+1;m\right)\)
\(d\left(M;ON\right)=3\sqrt{2}\Leftrightarrow\dfrac{\left|m+1+m\right|}{\sqrt{1^2+1^2}}=3\sqrt{2}\)
\(\Leftrightarrow\left|2m+1\right|=6\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(\dfrac{7}{2};\dfrac{5}{2}\right)\\M\left(-\dfrac{5}{2};-\dfrac{7}{2}\right)\end{matrix}\right.\)