K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(x^2+4y^2-4xy=\left(x-2y\right)^2\)(*)

Thay x=18, y=4 vào biểu thức (*), ta được

\(\left(18-2\cdot4\right)^2=\left(18-8\right)^2=100\)

Vậy: 100 là giá trị của biểu thức \(x^2+4y^2-4xy\) tại x=18 và y=4

b) Ta có: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2\)(1)

Thay x=100 vào biểu thức (1), ta được

\(\left(4\cdot100\right)^2=400^2=160000\)

Vậy: 160000 là giá trị của biểu thức \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)tại x=100

Bài 2:

a) Để giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định thì \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

Vậy: khi \(x\notin\left\{0;5\right\}\) thì giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định

b) Để giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định thì

\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

Vậy: khi \(x\notin\pm2\) thì giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định

19 tháng 1 2020

Bài 1:

\(a,x^2+4y^2-4xy\)

\(=\left(x-2y\right)^2\left(1\right)\)

Thay \(x=18;y=4\) vào \(\left(1\right)\) ta được:

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)

Vậy ......................................

\(b,\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2.\left(4x^2-1\right)\)

Thay \(x=100\) vào biểu thức trên ta được:

\(\left(2.100+1\right)^2+\left(2.100-1\right)^2+2\left(4.100^2-1\right)\)

\(=201^2+199^2+2.39989\)

\(=40401+39601+79978\)

\(=160000\)

Vậy ............................

Bài 2:

\(a,\frac{x^2-10x+25}{x^2-5x}\)

Để biểu thức trên được xác định \(\Leftrightarrow x^2-5x\ne0\)

\(\Leftrightarrow x\left(x-5\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

\(b,\frac{x^2-10x}{x^2-4}\)

Để biểu thức trên xác định \(\Leftrightarrow x^2-4\ne0\)

\(\Leftrightarrow x^2-2^2\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)

a: \(=\left(x-2y\right)^2=\left(18-2\cdot4\right)^2=100\)

14 tháng 12 2015

=x2-4xy+4y2

=(x-2y)2

Thay x=18;y=4 vào biểu thức 

=(18-8)2

=102

=100

25 tháng 10 2023

a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)

b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)

Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)

c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)

Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)

1) tính nhanh giá trị biểu thức:a) x^2 + 4y^2 - 4xy tại x=18; y=4b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100 2) tìm x biết : a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0                                                           d) (2x - 1)^2 -25 = 0 3) phân tích các đa thức sau thành nhân tử :a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2...
Đọc tiếp

1) tính nhanh giá trị biểu thức:

a) x^2 + 4y^2 - 4xy tại x=18; y=4

b) (2x + 1)^2 + (2x - 1)^2 - 2 (1 + 2x) (1 - 2x) tại x = 100

 

2) tìm x biết : 

a) 7x^2 -28 =0                    b) 2/3x (x^2 - 4) = 0                               c) 2x (3x - 5) - (5 - 3x) = 0

                                                           d) (2x - 1)^2 -25 = 0

 

3) phân tích các đa thức sau thành nhân tử :

a) 2(x - 3) - y (x - 3)        b) x^3 + 3x^2 - 3x - 1        c) x^2 + 5xy         d) x^2 - x - y^2 -y

e) x^2 - 9y^2 +2x +1        f) x^2 - 2x - 4y^2 - 4y       g) 10x +15y          h) x^2 - 2xy + y^2 - 4

i) 4x - 4y + x^2 - 2xy + y^2               k) x^4 - 4x^3 - 8x^2 - 8x                  l) x^3 + x^2 - 4x - 4

n) x^3 + x^2y - xy^2 - y^3                o) x^2 - y^2 - 2x - 2y                        p) x^2 - y^2 - 2x + 2y

q) 2x + 2y - x^2 - xy                         r) x^2 - 25 + y^2 + 2xy                     s) x^3 - 2x^2 + x

t) 12x^2y - 18xy^2 - 30y^2                u) 36 - 12x + x^2                              v) 3x^2 - 3xy

1

Bài 2: 

a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

17 tháng 12 2018

thay x và y vào là đc mà bạn

18 tháng 12 2018

\(a,x^2+4y^2-4xy\)

\(=x^2-4xy+4y^2\)

\(=x^2-2.x.2y+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)

Thay x = 18 và y = 4 vào biểu thức ta có :

\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=1000\)

KL :.....

1 tháng 8 2018

a) \(x^2-4xy+4y^2\)

\(=x^2-2.x.2y+\left(2y\right)^2\)

\(=\left(x-2y\right)^2\)

Thay x = 18 ; y = 4 vào ta được

\(=\left(18-2.4\right)^2\)

\(=10^2=100\)

b) \(\left(2x+1\right)^2-2\left(1+2x\right)\left(1-2x\right)+\left(2x-1\right)^2\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)

\(=\left(2x+1+2x-1\right)^2\)

\(=\left(4x\right)^2\)

Thay x = 100 ta được

\(=\left(4.100\right)^2\)

\(=400^2=160000\)

1 tháng 8 2018

a) ta có : \(x^2+4y^2-4xy=\left(x-2y\right)^2=\left(18-2.4\right)^2=100\)

b) ta có : \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)

\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)

\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2=16\left(100\right)^2=160000\)

26 tháng 6 2018

M = x^2 + 4y^2 - 4xy = ( x - 2y )^2 = ( 18 - 2.4 )^2 = 10^2 = 100

21 tháng 4 2017

undefined

21 tháng 6 2017

a,

\(x^2-4xy+4y^2=\left(x-2y\right)^2\)

Thay x=18;y=4 vào biểu thức

\(\left(18-8\right)^2=10^2=100\)

b, \(=\left(2x+1-\left(1-2x\right)\right)^2=\left(2x+1-1+2x\right)^2=16x^2=16.10000=160000\)

4 tháng 1 2017

M = x2 + 4y2 – 4xy

= x2 – 2.x.2y + (2y)2 (Hằng đẳng thức (2))

= (x – 2y)2

Thay x = 18, y = 4 ta được:

    M = (18 – 2.4)2 = 102 = 100