Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(x^2+4y^2-4xy=\left(x-2y\right)^2\)(*)
Thay x=18, y=4 vào biểu thức (*), ta được
\(\left(18-2\cdot4\right)^2=\left(18-8\right)^2=100\)
Vậy: 100 là giá trị của biểu thức \(x^2+4y^2-4xy\) tại x=18 và y=4
b) Ta có: \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2\)(1)
Thay x=100 vào biểu thức (1), ta được
\(\left(4\cdot100\right)^2=400^2=160000\)
Vậy: 160000 là giá trị của biểu thức \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)tại x=100
Bài 2:
a) Để giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định thì \(x^2-5x\ne0\Leftrightarrow x\left(x-5\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
Vậy: khi \(x\notin\left\{0;5\right\}\) thì giá trị của biểu thức \(\frac{x^2-10x+25}{x^2-5x}\)được xác định
b) Để giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định thì
\(x^2-4\ne0\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)
Vậy: khi \(x\notin\pm2\) thì giá trị của biểu thức \(\frac{x^2-10x}{x^2-4}\) được xác định
Bài 1:
\(a,x^2+4y^2-4xy\)
\(=\left(x-2y\right)^2\left(1\right)\)
Thay \(x=18;y=4\) vào \(\left(1\right)\) ta được:
\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
Vậy ......................................
\(b,\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2.\left(4x^2-1\right)\)
Thay \(x=100\) vào biểu thức trên ta được:
\(\left(2.100+1\right)^2+\left(2.100-1\right)^2+2\left(4.100^2-1\right)\)
\(=201^2+199^2+2.39989\)
\(=40401+39601+79978\)
\(=160000\)
Vậy ............................
Bài 2:
\(a,\frac{x^2-10x+25}{x^2-5x}\)
Để biểu thức trên được xác định \(\Leftrightarrow x^2-5x\ne0\)
\(\Leftrightarrow x\left(x-5\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)
\(b,\frac{x^2-10x}{x^2-4}\)
Để biểu thức trên xác định \(\Leftrightarrow x^2-4\ne0\)
\(\Leftrightarrow x^2-2^2\ne0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-2\\x\ne2\end{matrix}\right.\)
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)
\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)
\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)
\(M=343-8x^3-64+8x^3\)
\(M=279\)
Vậy M có giá trị 279 với mọi x
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)
\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)
\(P=16x^3-8x^2+4x-2\)
Thay \(x=10\) vào P ta có:
\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)
Vậy P có giá trị 15238 tại x=10
a: M=343-8x^3-64+8x^3=279
b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3
=16x^3-8x^2+4x-2
=16*10^3-8*10^2+4*10-2=15238
thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)
Bài 2 :
a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)
\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)
b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)
\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(B=\frac{8}{5}\)
=> giá trị của B ko phụ thuộc vào biến x
bài 1
=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)
=\(\left(2x+1+2x-1\right)^2\)
=\(\left(4x\right)^2\)
=\(16x^2\)
Tại x=100 thay vào biểu thức trên ta có:
16*100^2=1600000
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
thay x và y vào là đc mà bạn
\(a,x^2+4y^2-4xy\)
\(=x^2-4xy+4y^2\)
\(=x^2-2.x.2y+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
Thay x = 18 và y = 4 vào biểu thức ta có :
\(\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=1000\)
KL :.....