K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 12 2022

Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được

\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)

Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).

a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).

b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).

10 tháng 8 2016
a = -1 b = 20 c = -12
21 tháng 9 2021

\(a,f\left(x\right):g\left(x\right)=\left(3x^4+9x^3+7x+2\right):\left(x+3\right)\\ =\left[3x^3\left(x+3\right)+7\left(x+3\right)-19\right]:\left(x+3\right)\\ =\left[\left(3x^3+7\right)\left(x+3\right)-19\right]:\left(x+3\right)\\ =3x^3+7.dư.19\)

\(c,\) Để \(k\left(x\right)⋮g\left(x\right)\Leftrightarrow-x^3-5x+2m=\left(x+3\right)\cdot a\left(x\right)\)

Thay \(x=-3\)

\(\Leftrightarrow-\left(-3\right)^3-5\left(-3\right)+2m=0\\ \Leftrightarrow27+15+2m=0\\ \Leftrightarrow2m=-42\\ \Leftrightarrow m=-21\)

20 tháng 10 2020

f(x) = x4 - 9x3 + 21x2 + ax + b 

g(x) = x2 - x - 2

Ta có f(x) bậc 4 ; g(x) bậc 2

=> Thương là một đa thức bậc 2

Gọi đa thức thương đó là h(x) = x2 + cx + d

Ta có f(x) chia hết cho g(x)

<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )

<=> x4 - 9x3 + 21x2 + ax + b = x+ cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d

<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)

\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)

Vậy ...