K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{F\left(x\right)}{G\left(x\right)}=\frac{ax^3+bx^2+10x-4}{x^2+x-2}\)

\(=\frac{a\cdot x^3+a\cdot x^2-2a\cdot x+\left(b-a\right)\cdot x^2+\left(b-a\right)\cdot x-2\left(b-a\right)+\left(10-b+3a\right)x+2\left(b-a\right)-4}{x^2+x-2}\)

\(=a\cdot x+\left(b-a\right)+\frac{\left(3a-b+10\right)x+2\left(b-a\right)-4}{x^2+x-2}\)

Để f(x) chia hết cho g(x) thì \(\begin{cases}3a-b+10=0\\ 2\left(b-a\right)-4=0\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ b-a=2\end{cases}\Rightarrow\begin{cases}3a-b=-10\\ a-b=-2\end{cases}\)

=>\(\begin{cases}3a-b-a+b=-10+2\\ a-b=-2\end{cases}\Rightarrow\begin{cases}2a=-8\\ b=a-\left(-2\right)=a+2\end{cases}\Rightarrow\begin{cases}a=-4\\ b=a+2=-4+2=-2\end{cases}\)

2 tháng 8 2016

Do \(f\left(x\right)\) có bậc 4 ,\(y\left(x\right)\) có bậc 2 nên đa thức thương\(Q\left(x\right)\) có bậc cao nhất là 2 
Đặt \(Q\left(x\right)=6x^2+cx+d\)
có f(x)=\(6x^4-7x^3+ax^2+3x+2\)y(x).Q(x)=\(\left(x^2-x+b\right)\left(6x^2+cx+d\right)=6x^4+x^3\left(c-6\right)+x^2\left(a-c+6b\right)-x\left(a+bc\right)+bd\)
Đống nhất thức 2 vế ta được \(\hept{\begin{cases}6=6\\-7=c-6\\a=a-c+6b\end{cases},\hept{\begin{cases}3=-\left(a+bc\right)\\2=bd\end{cases}}}\)
giải hệ trên ta có\(\hept{\begin{cases}c=-1\\b=-\frac{1}{6}\\a=\frac{19}{6},d=-12\end{cases}}\)
Vậy a=19/6, b=-1/6

2 tháng 8 2016

xem cái đoạn nhân có nhân sai không @@
ĐÂY LÀ PHƯƠNG PHÁP HỆ SỐ BẤT ĐỊNH NHÉ .
 

12 tháng 12 2020

Đề đúng chưa v

3 tháng 11 2019

Đa thức x- 3x + 2 có nghiệm \(\Leftrightarrow\)x- 3x + 2 = 0

\(\Leftrightarrow x^2-2x-x+2=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)

1 và 2 là hai nghiệm của đa thức x- 3x + 2

Để f(x) = x+ ax+ bx - 1  chia hết cho x- 3x + 2 thì 1 và 2 cũng là hai nghiệm của đa thức f(x) = x+ ax+ bx - 1

Nếu x = 1 thì \(1+a+b-1=0\Leftrightarrow a+b=0\)(1

Nếu x = 2 thì \(16+8a+2b-1=0\Leftrightarrow4a+b=\frac{-15}{2}\)(2)

Lấy (2) - (1), ta được: \(3a=\frac{-15}{2}\Leftrightarrow a=\frac{-5}{2}\)

\(\Rightarrow b=0+\frac{5}{2}=\frac{5}{2}\)

Vậy \(a=\frac{-5}{2};b=\frac{5}{2}\)