K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

bổ xung định lý thứ 5

f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)

1 tháng 11 2020

Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)

Áp dụng định lý Bezout ta có:

\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)

\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)

\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)

\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)

\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)

\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)

\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)

Từ (2) và (3)

\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)

\(\Leftrightarrow10a-3b-6a+3b=24\)

\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)

Thay \(a=6\)vào (1) ta có:

\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)

Vậy \(a=6\)và \(b=11\)

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

Lời giải:

a)

\(f(-3)=(-3)^2=9; f(-\frac{1}{2})=(\frac{-1}{2})^2=\frac{1}{4}\)

\(f(0)=0^2=0\)

\(g(1)=3-1=2; g(2)=3-2=1; g(3)=3-3=0\)

b)

\(2f(a)=g(a)\)

\(\Leftrightarrow 2a^2=3-a\)

\(\Leftrightarrow 2a^2+a-3=0\Leftrightarrow (2a+3)(a-1)=0\)

\(\Rightarrow \left[\begin{matrix} a=\frac{-3}{2}\\ a=1\end{matrix}\right.\)

21 tháng 7 2017

bài 2:

\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)

\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)

\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)

sao nữa nhỉ :v

22 tháng 7 2017

rồi sao nua

NV
3 tháng 6 2020

\(f\left(x\right)⋮\left(x-1\right)\left(x+2\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(-2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+\left(a+b\right)+\left(2+b\right)+1=0\\-8a+4\left(a+b\right)-2\left(2+b\right)+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+2b=-3\\-4a+2b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\)