Cho a ; b ; c là các số nguyên âm . Tìm số tự nhiên d sao cho :
|a-b| + |b-c| + |c-a |= 2018d + 2019
Help me!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
-Nhận xét : Ta thấy rằng với mọi số nguyên a ; b ; c thì biểu thức | a - b | + | b- c| + | c - a | đều là số dương ⇒ Biểu thức 2018d + 2019 cũng là số dương ⇒ có 3 trường hợp :
TH1 : d < 0 ⇒ d là số âm ⇒ (Loại)
TH2 : d > 0 ⇒ 2018d là số dương ⇒ 2018d + 2019 là số âm ⇒ ( loại)
TH3 : d = 0 ⇒ 2018d + 2019 là số dương ⇒ ( thỏa mãn )
Vậy chỉ có d = 0 thỏa mãn