K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

bạn tự vẽ hình nha

tam giác BAC vuông can tại a suy ra bac=90,abc=acb=45 và ab=ac

gọi I là giao điểm của các tia phân giác trong tam giác ABC suy ra AI là tia phân giác của tg ABC

gọi G là giao điểm của dh và bi,n là giao diem của ak và be

BE,CD lân lượt là tia phân giác của tg ABC suy ra abe=cbe=acd=bcd=22.5

suy ra tg BIC cân tại i suy ra ib=ic

cmđ tg dgb=hgb(g c g) suy ra db=bh

cmđ tg dbi=hbi(c g c) suy ra di =ih và bdi=bhi

cmđ tg abn=kbn( g c g) suy ra ab=bk 

ta có bd+da=ba

va bh+hk=bk

mà bd=bh,ba=bk

suy ra da=hk

ta có bdc=bac+acd=90+22.5=112.5

mà bdc=bhi

suy ra bhi=112.5 suy ra ihk=67.5

và ida=67.5

cmđ tg ida=ihk(cg c) suy ra da=hk và ia=ik

cmd dib=45 mà dib=eic(2 góc đối đỉnh) suy ra eic=45 độ cmđ tg dib=eic(g c g)  suy ra db=ec

ta có db+da=ab

và ec+ea=ac

mà db=ec,ab=ac

nên ad=ae

cmđ tg dai=eai(c g c) suy ra dia=eia

cmđ dia=eia=67.5

ta có adi=aid=67.5 suy ra tg dai cân tai a suy ra ad=ai mà ad=hk và ai=ik suy ra hk=ik (1)

cmđ ikh=45(do hik=ihk=67.5/tam giác cân )

cmđ kic=22.5

ta có kic=cki=22.5 suy ra tg ikc cân tại k suy ra ik=kc(2)

từ 1 và 2 suy ra  hk=kc

chỗ nào ko hiểu thì cứ hỏi mình ,tab cho mình nếu đúng nha

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

NM
24 tháng 1 2021

A H C D B

ta có \(\widehat{ADB}=\widehat{DAC}+\widehat{DCA}=\widehat{DAH}+\widehat{HAB}=\widehat{DAB}\)

vì vậy tam giác ABD cân tại B

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.a.Chứng minh BA=BIb.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đềuc.Tính các góc của tam giác BCKCho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại...
Đọc tiếp

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.

a.Chứng minh BA=BI

b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều

c.Tính các góc của tam giác BCK

0
29 tháng 1 2021

làm ơn giúp mình với cô cho nhiều bài quá huhu

25 tháng 6 2017

Làm gì có khái niệm hai tia bằng nhau.

ĐỀ ĐÚNG phải là hai ĐƯỜNG phân giác bằng nhau.

8 tháng 1 2019

a có: AH  vuông góc BC suy ra  hình tam giác AHC vuông tại H, hình tam giác AHB vuông tại H

                          => \widehat{C}+\widehat{HAC}=90^o ; \widehat{ABH}+\widehat{BAH}=90^o                          Có: AI là phân giác \widehat{BAH}nên \widehat{IAH}\widehat{IAB}=\frac{1}{2}\widehat{BAH}=\widehat{C}

[ vì theo giả thiết có \widehat{BAH}=2\widehat{C}BAH=2C]

                           Suy ra \widehat{IAH}+\widehat{HAC}=90^o                            =>\widehat{IAC}=90^o hay \widehat{IAE}=90^o=>\Delta IAE=>ΔIAEvuông tại A [1]

                               Lại có \widehat{AIE}=\widehat{IAB}+\widehat{IBA}A[góc ngoài tại đỉnh I của \Delta ABIΔABI]

                                Mà BE là phân giác \widehat{ABH}\Rightarrow\widehat{IBA}=\frac{1}{2}\widehat{ABH}ABH

                                Suy ra:  \widehat{AIE}=\frac{1}{2}\left[\widehat{BAH}+\widehat{ABH}\right]=\frac{1}{2}.90^o=45^oA[2]

                               Từ 1 và 2 suy ra \Delta AIE vuông cân tại A

                               Suy ra AE là phân giác ngoài của \Delta ABH tại A,BE là phân giác trong tại B của \Delta ABH

                                => HE là phân giác ngoài tại H của \Delta BAH

                                => HE là phân giác \widehat{AHC}

                                  Vậy ta có điều phải chứng minh

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1