K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a. 2x = 8 ; b. 5x = 25 ; c. 3x : 35 = 9 d. \(\dfrac{16}{2^x}=2\) ; e. 8x : 2x = 4 ; f. 2x . 3x = 36 ; g. \(\dfrac{\left(-3\right)^n}{81}=-27\)

2x = 23 5x = 52 3x : 35 = 32 \(\dfrac{2^4}{2^x}=1\) ( 23)x : 2x = 22 6x = 62 \(\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=\left(-3\right)^3\)

x = 3 x = 3 3x = 32 . 35 \(2^{4-x}=2^1\) 23x : 2x = 22 x = 2 \(\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)

3x = 37 \(\Rightarrow4-x=1\) 23x - x = 22 \(\left(-3\right)^n=\left(-7\right)^7\)

=>X = 7 x = 4 - 1 22x = 22 => n = 7

x = 3 2x = 2

x = 2 : 2

x = 1

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

11 tháng 8 2023

a) \(\left|2x+1\right|=\left|x+4\right|\Rightarrow\left[{}\begin{matrix}2x+1=x+4\\2x+1=-x-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)

11 tháng 8 2023

b) \(\left|2x-1\right|=x+4\Rightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

22 tháng 2 2016

a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x

                            (3-2x)>0 suy ra|3-2x|=3-2x

ta có: 2-x+3-2x=2x+1 

        5-3x=2x+1

        5-1=2x+3x

        6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)

nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x

                                2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3

ta có:2-x+2x-3=2x+1

      -1+x=2x+1

      -1-1=2x-x

       -2=x(loại vì ko thuộc khả năng xét)

nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2

                       3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3

ta có:x-2+2x-3=2x+1

        3x-5=2x+1

       3x-2x=5+1

     x=6(chọn vì thuộc khả năng xét)

suy ra x=6

22 tháng 2 2016

c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)  

   \(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)

suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)

 ta có: 4(15k)-3(10k)+5(8k)=7

           60k-30k+40k=7

           70k=7 suy ra k=1/10

ta có:x=1/10.15=3/2

        y=1/10.10=1

     

19 tháng 9 2021

a) \(5^{x-1}+5^{x-3}=650\)

\(\Rightarrow5^x\left(\frac{1}{5}+\frac{1}{125}\right)=650\)

\(\Rightarrow5^x=650:\frac{26}{125}\)

\(\Rightarrow5^x=3125\)

\(\Rightarrow5^x=5^5\)

\(\Rightarrow x=5\)

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)