1. Tìm 2 số tự nhiên nhỏ nhất a và b thoả mãn ƯCLN ( a ; b) = 12 và a - b = 84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ là 3^2017=2^2018
đây là ý kiến riêng của mk
k cho mk nha!!!
a) \(x⋮15;x⋮35;x⋮42\&250< x< 850\) (sửa dấu chia thành chia hết)
\(BCNN\left(15;35;42\right)=210\)
\(\Rightarrow x\in BC\left(15;35;42\right)=\left\{0;210;420;630;840;...\right\}\)
mà \(250< x< 850\)
\(\Rightarrow x\in\left\{420;630;840\right\}\)
b) x nhỏ nhất khác 0 thỏa mãn \(x⋮15;x⋮115\)
\(BCNN\left(15;115\right)=345\)
Vậy \(x\in\left\{345\right\}\) thỏa mãn đề bài
a) Dễ thấy P = 102120 + 2120
= 102120 + 212.10
= 10(102119 + 212)
=> P \(⋮10\)
Lại có P = 102120 + 2120
= 10(102119 + 212)
= 10.(1000...00 + 212)
2119 số 0
= 10.1000...0212
2116 số 0
Tổng các chữ số của số S = 1000...0212 (2116 chữ số 0)
là 1 + 0 + 0 + 0 +.... + 0 + 2 + 1 + 2 (2116 hạng tử 0)
= 1 + 2 + 1 + 2 = 6 \(⋮3\)
=> S \(⋮3\Rightarrow P=10S⋮3\)
mà \(\left\{{}\begin{matrix}P⋮10\\P⋮3\\\left(10,3\right)=1\end{matrix}\right.\Rightarrow P⋮10.3\Rightarrow P⋮30\)
Gọi (a,b) = d \(\left(d\inℕ^∗;d\ne1\right)\)
=> \(\left\{{}\begin{matrix}a⋮d\\b⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\5n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5.(2n+3)⋮d\\2.(5n+2)⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}10n+15⋮d\left(1\right)\\10n+4⋮d\left(2\right)\end{matrix}\right.\)
Lấy (1) trừ (2) ta được
(10n + 15) - (10n + 4) \(⋮d\)
<=> 11 \(⋮d\)
\(\Leftrightarrow d\in\left\{1;11\right\}\) mà d \(\ne1\)
<=> d = 11
Vậy (a;b) = 11
Do ƯCLN (a;b) = 12 ⇒ a = 12m; b = 12n (m và n là 2 số nguyên tố cùng nhau)
Ta có: a - b = 12(m - n) = 84
⇒m - n = 7
Mà m và n là hai số nguyên tố cùng nhau và ƯCLN (12m;12n) = 1 ⇒ m = 8 ; n = 1
⇒a = 96 ; b = 12
Vậy 2 số cần tìm là 96 và 12
xin tick =)