K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

A B D x N M

Xét \(\Delta NAD\)\(\Delta NBD\) có:

ND chung

\(\widehat{NDA}=90^o\)

DA=DB

\(\Rightarrow\Delta NAD=\Delta NBD\left(c-g-c\right)\)

\(\Rightarrow\widehat{ANM}=\widehat{MNB}\) (2 góc tương ứng)

\(\Rightarrow NA=NB\) ( 2 cạnh tương ứng)

b. Xét \(\Delta MNA\)\(\Delta MNB\) có:

NM chung

\(\widehat{ANM}=\widehat{BNM}\left(cmt\right)\)

\(NA=NB\left(cmt\right)\)

\(\Rightarrow\Delta MNA=\Delta MNB\left(c-g-c\right)\)

12 tháng 3 2020

M N x D A B

Xét tam giác NAD và tam giác NBD

có AD=DB(GT)

góc ADN=góc NDB = 900

ND chung

suy ra  tam giác NAD = tam giác NBD (c.g.c)

b) Xét tam giác MAN và tam giác MNB

có MA=MB (GT)

AN=NB (GT)

MN chung

suy ra tam giác MAN = tam giác MNB (c.c.c)

c) theo câu b tam giác MAN = tam giác MNB (c.c.c) suy ra góc AND = góc BND

suy ra ND là tia phân giác của góc ANB

d) góc AMD là góc ngoài tại đỉnh N của tam giác AMN suy ra góc AMD> góc AND 

góc BMD là góc ngoài tại đỉnh N của tam giác BMN suy ra góc BMD> góc BND 

suy ra góc AMD + góc BMD > góc AND + góc BND

hay góc AMB > góc ANB

20 tháng 2 2019

Hình như câu d sai đề

20 tháng 2 2019

Bạn tự vẽ hình nha

a) xét ∆NAD và ∆NBD có

        ND cạnh chung

     AD=AB   (d là trung điểm của AB )

      Góc NDA = góc NDB(=90°)

=>∆NAD=∆NBD(C-G-C)

b) xét ∆MNA và ∆MNB có

       MN cạnh chung

     Góc MNA = góc MNB (vì ∆NAD=∆NBD )

       NA =NB (vì ∆NAD=∆NBD)

=>∆MNA=∆MNB(c-g-c)

c) ta có ∆NAD=∆NBD (cmt)

 =>góc AND =góc BND (2 GÓC TƯƠNG ỨNG )

 =>ND LÀ TIA PHÂN GIÁC CỦA GÓC ANB

       

13 tháng 3 2020

Bài 1:

a) Xét 2 \(\Delta\) \(MAE\)\(MCB\) có:

\(MA=MC\) (vì M là trung điểm của \(AC\))

\(\widehat{AME}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(ME=MB\left(gt\right)\)

=> \(\Delta MAE=\Delta MCB\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta MAE=\Delta MCB.\)

=> \(AE=BC\) (2 cạnh tương ứng) (1).

Xét 2 \(\Delta\) \(NAF\)\(NBC\) có:

\(NA=NB\) (vì N là trung điểm của \(AB\))

\(\widehat{ANF}=\widehat{BNC}\) (vì 2 góc đối đỉnh)

\(NF=NC\left(gt\right)\)

=> \(\Delta NAF=\Delta NBC\left(c-g-c\right)\)

=> \(AF=BC\) (2 cạnh tương ứng) (2).

Từ (1) và (2) => \(AE=AF.\)

c) Theo câu a) ta có \(\Delta MAE=\Delta MCB.\)

=> \(\widehat{AEM}=\widehat{CBM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AE\) // \(BC\) (3).

+ Theo câu b) ta có \(\Delta NAF=\Delta NBC.\)

=> \(\widehat{AFN}=\widehat{BCN}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AF\) // \(BC\) (4).

Từ (3) và (4) => \(AE\) trùng với \(AF\) (theo tiên đề Ơ - clit).

=> 3 điểm \(E,A,F\) thẳng hàng (đpcm).

Chúc bạn học tốt!

13 tháng 3 2020

bn ơi, bn giúp mik bài 2 zới

23 tháng 7 2016

a)Vì BN=AC mà AC=AM'

 => BN=AM' (tính chất bắc cầu)

 vì BN=AM', AB=AB

 =>AN=BM'

Vì BN'=BC mà BC=AM
=>BN'=AM

Vì BN'=AM, AB=AB
=>AN'=BM

Vì BN=AC ,AM=BC

=>MC=NC

b) mình chịu

cảm ơn bạn Nguyễn Thành Danh nhiều nha

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0
Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:a) Góc OAB = góc OCAb) Tam giác AOM = tam giác CONc) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MONBài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C...
Đọc tiếp

Bài 1: Cho tam giác ABC cân (AB=AC), O là giao điểm 3 trung trực 2 cạnh của tam giác ABC (O nằm trong tam giác). Trên tia đối của các tia AB và CA ta lấy 2 điểm M, N sao cho AM=CN. Chứng minh:
a) Góc OAB = góc OCA
b) Tam giác AOM = tam giác CON
c) Hai trung trực OM, ON cắt nhau tại I. Chứng minh OI là tia phân giác của góc MON
Bài 2: Cho góc nhọn xOy; trên tia Ox lấy 2 điểm A và B (A nằm giữa O, B). Trên Oy lấy 2 điểm C, D (C nằm giữa O, D) sao cho OA=OC và OB=OD. Chứng minh:
a) Tam giác AOD = tam giác COB
b) Tam giác ABD = tam giác CDB
c) Gọi I là giao điểm của AD và BC. Chứng minh IA=IC; IB=ID
Bài 3: Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB, hai đường thẳng này cắt nhau tại D
a) Chứng minh: AD=BC và AB=DC
b) Gọi M, N lần lượt là trung điểm của BC và AD. Chứng minh: AM=CN
c) Gọi O là giao điểm của AC và BD. Chứng minh: OA=OC và OB=OD
d) Chứng minh: M, O, N thẳng hàng
Bài 4: Cho góc xOy = 60 độ. Vẽ Oz là tia phân giác của góc xOy 
a) Tính góc xOy?
b) Trên Ox lấy điểm A và trên Oy lấy điểm B sao cho OA=OB. Tia Oz cắt AB tại I. Chứng minh tam giác OIA = tam giác OIB
c) Chứng minh OI vuông góc AB
d) Trên tia Oz lấy điểm M. Chứng minh MA=MB
e) Qua M vẽ đường thẳng song song với AB cắt tia Ox, Oy lần lượt tại C và D. Chứng minh BD=AC

       Mọi ng giúp mình giải bài này nhé! Cảm ơn mn <3

7
31 tháng 5 2018

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

31 tháng 5 2018

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath