Bài 10. Tìm các số tự nhiên x, y sao cho:
a) (x+5): (x+2);
b) (x - 1)(y-2) = 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
Bài 1 :
(2x + 1)(y - 5) = 12
=> 2x + 1 \(\in\)Ư(12)
Vì x \(\ge\)0 => 2x + 1 \(\ge\)1
Mà 2x + 1 chia 2 dư 1
=> 2x + 1 \(\in\){1; 3}.
Ta có bảng sau:
2x + 1 | 1 | 3 |
2x | 0 | 2 |
x | 0 | 1 |
y - 5 | 12 | 4 |
y | 17 | 9 |
Vậy : (x; y) \(\in\){(0; 17); (1; 9)}
Bài 2:
4n - 5 chia hết cho 2n - 1
=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2(2n - 1) - 3 chia hết cho 2n - 1
Mà 2(2n - 1) chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1 = > 2n - 1 \(\in\)Ư(3) = {1; 3; -1; -3}
Mà n \(\ge\) 0 => 2n - 1 \(\ge\)1 => 2n - 1 \(\in\){-1; 1; 3}
Ta có bàng sau:
2n - 1 | -1 | 1 | 3 |
2n | 0 | 2 | 4 |
n | 0 | 1 | 2 |
Vậy : n \(\in\){0; 1; 2}
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
x + 5 ⋮ x + 2
⇔ x + 2 + 3 ⋮ x + 2
⇔ 3 ⋮ x + 2
⇔ x + 2 ϵ Ư(3) = { -3; -1; 1;3}
⇔ x ϵ { -5; -3; -2; 1}
vì x ϵ N ⇔ x = 1
b, (x-1)(y-2) =6
có các trường hợp:
th1: \(\left\{{}\begin{matrix}x-1=-1\\y-2=-6\end{matrix}\right.\) \(\Leftrightarrow\) x = 0; y = -4 (loại)
th2: \(\left\{{}\begin{matrix}x-1=1\\y-2=6\end{matrix}\right.\) ⇔ x = 2; y = 8
th3: \(\left\{{}\begin{matrix}x-1=-6\\y-2=-1\end{matrix}\right.\) ⇔ x = -5; y= 1 (loại)
th4: \(\left\{{}\begin{matrix}x-1=6\\y-2=1\end{matrix}\right.\) ⇔ x = 7; y = 3
th5: \(\left\{{}\begin{matrix}x-1=-2\\y-2=-3\end{matrix}\right.\) ⇔ x = -1; y = -1(loại)
th6 : \(\left\{{}\begin{matrix}x-1=2\\y-2=3\end{matrix}\right.\) ⇔ x = 3; y = 5
th7 : \(\left\{{}\begin{matrix}x-1=-3\\y-2=-2\end{matrix}\right.\) ⇔ x = -2 (loại)
th8 : \(\left\{{}\begin{matrix}x-1=3\\y-2=2\end{matrix}\right.\) ⇔ x = 4; y= 4
vậy (x,y) =(2;8) ; ( 7; 3) ; (4;4)
cả hai đều bằng 6 à