Cho a,b thỏa mãn a>b>0 ; a.b=1 . Chứng minh (a2 + b2 )/ (a-b) >=2 căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì abc>0 nên có ít nhất 1 số lớn hơn 0
Vai trò của a, b, c như nhua nên chọn a>0
TH1: b<0;c<0 \(\Rightarrow b+c>-a\Rightarrow\left(b+c\right)^2< -a\left(b+c\right)\\ \Rightarrow b^2+c^2+2bc< -ab-ac\\ bc+ab+ac< -b^2-c^2-bc=-\left(b^2+c^2+a^2\right)< 0\)(trái với giả thiết)
\(\Rightarrow\)TH2: b>0, c>0 thì a>0( luôn đúng)
Vậy a, b, c >0
\(\left(a+1\right)\left(b+1\right)\ge1\)
\(=>ab+a+b+1\ge1\)
\(=>1+a+b+1\ge1\)( luôn đúng ) (* )
KL : (* ) (đúng ) => \(\left(a+1\right)\left(b+1\right)\ge1\)(đúng )
KL
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
Do a.b > 0 => a và b cùng âm hoặc cùng dương
Mà nếu a và b cùng âm thì a + b âm hay a + b < 0, trái với đề bài
=> a và b cùng dương
3a^2 + b^2 - 4ab = 0
<=> a^2 - 2ab + b^2 + 2a^2 - 2ab = 0
<=> (a-b)(3a-b) = 0
=> a = b hoặc a = b/3
Mà b>a>0 => a = b/3
Thế vào A ta có: (b/3 - b) / (b/3 + b)
Rút gọn ta được: A = (1/3 - 1) / (1/3 + 1) = -1/2
\(\frac{a^2+b^2}{a-b}=\frac{a^2+b^2-2ab+2}{a-b}=\frac{\left(a-b\right)^2+2}{a-b}=\left(a-b\right)+\frac{2}{a-b}\)
áp dụng bất đẳng thức côsi cho hai số dương
\(\left(a-b\right)+\frac{2}{a-b}\ge2\sqrt{\frac{\left(a-b\right)2}{a-b}}=2\sqrt{2}\)
yim yim sao lại a2 + b 2 - 2ab -2 zậy bn mik ko hiểu đoạn này cho lắm