Cho tam giác ABC các đường phân giác AM, BN cắt nhau tại O. Biết AO=\(\sqrt{3}MO\); NO=\(\sqrt{3}-1BO\). Chứng minh rằng tam giác ABC vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Quang Nam - Toán lớp 8 - Học toán với OnlineMath
Tham khảo bài 3 tại link trên nhé!
a: góc HMC+góc HNC=180 độ
=>HMCN nội tiếp
b: góc CED=góc CAD
góc CDE=góc CAE
mà góc CAD=góc CAE(=góc CBD)
nên góc CED=góc CDE
=>CD=CE
a) Xét ΔABD và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
Suy ra: \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
hay \(\widehat{ADM}=90^0\)
Xét ΔADM có DA=DM(gt)
nên ΔADM cân tại D(Định nghĩa tam giác cân)
Xét ΔADM cân tại D có \(\widehat{ADM}=90^0\)(cmt)
nên ΔADM vuông cân tại D(Định nghĩa tam giác vuông cân)