K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

a: góc BFH+góc BMH=180 độ

=>BFHM nội tiếp

b: góc AMC=góc AFC=90 độ

=>AFMC nội tiếp

 

13 tháng 8 2020

A B C O D E F

Ta có: \(\frac{AD}{OD}=\frac{S\left(ABC\right)}{S\left(OBC\right)};\frac{BE}{OE}=\frac{S\left(BAC\right)}{S\left(OAC\right)};\frac{CF}{OF}=\frac{S\left(CBA\right)}{S\left(OBA\right)}\)

=> \(\frac{AD}{OD}+\frac{BE}{OE}+\frac{CF}{OF}=S\left(ABC\right)\left(\frac{1}{S\left(OBC\right)}+\frac{1}{S\left(OAC\right)}+\frac{1}{S\left(OAB\right)}\right)\)\(\ge S\left(ABC\right)\left(\frac{9}{S\left(OBC\right)+S\left(OAC\right)+S\left(OAB\right)}\right)=\frac{S\left(ABC\right).9}{S\left(ABC\right)}=9\)

=> \(\frac{AD}{OD}+\frac{BE}{OE}+\frac{CF}{OF}\ge9\)

=> \(\frac{AO+OD}{OD}+\frac{BO+OE}{OE}+\frac{CO+OF}{OF}\ge9\)

=> \(\frac{AO}{OD}+\frac{BO}{OE}+\frac{CO}{OF}\ge6\)

Dấu "=" xảy ra <=> \(S\left(OBC\right)=S\left(OAC\right)=S\left(OAB\right)\)

29 tháng 9 2016

A B C M N P O

Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)

\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)

Áp dụng bđt Bunhiacopxki, ta có : 

\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)

\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)

Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)

9 tháng 1 2018

Neu đề bài trên kia là cho >_ 6 thì chứng minh thế nào