\(\frac{BO}{BE}.\frac{CO}{C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

A B C O E F

Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"

Xét tg BCE có 

\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\) 

Xét tg BCF có

\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)

\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)

\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)

\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)

Xét tg ABC cũng áp dụng định lý đường phân giác có

\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\)  (1)

\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)

Thay (1) và (2)  vào (*) ta có

\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC

=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2

=> tam giác ABC vuông tại A (định lí pitago đảo)

29 tháng 8 2016

dùng hlt trong tam giác 

30 tháng 8 2016

CÓ VỀ ĐỀ BÀI SAI Ở CHỖ ĐẲNG THỨC ! 

15 tháng 8 2020

BE là tia phân giác của góc B nên \(\frac{AE}{BC}=\frac{AB}{BC}\Rightarrow\frac{AE}{AC}=\frac{AB}{BC+AB}\Rightarrow AE=\frac{bc}{a+c}\)

tương tự \(AE=\frac{bc}{a+b}\) \(\Rightarrow\frac{S_{AEF}}{S}=\frac{AE\cdot AF}{bc}=\frac{bc}{\left(a+c\right)\left(a+b\right)}\)

tương tự \(\frac{S_{BDF}}{S}=\frac{ac}{\left(b+c\right)\left(a+b\right)},\frac{S_{CDE}}{S}=\frac{ab}{\left(a+c\right)\left(c+b\right)}\)

bất đẳng thức cần chứng minh tương đương với \(\frac{S_{AEF}}{S}+\frac{S_{BDF}}{S}+\frac{S_{CDE}}{S}\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+c\right)\left(b+a\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)

biến đổi tương đương bất đẳng thức trên ta được \(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\ge6abc\)

chia 2 vế cho abc ta được \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

áp dụng cho 3 cặp số suy ra điều phải chứng minh

dấu "=" xảy ra khi a=b=c hay tam giác ABC đều