Cho góc xOy < 90 độ, kẻ N thuộc Ox; M thuộc Oy sao cho OM=ON.Kẻ MH, NK lần lượt vuông góc Oy, Ox.Gọi I là giao NK và MH
b, Tam giác MIN cân
c,Ss: IK và IN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,` Gọi `a` giao `b` là `O'`.
Ta có: `hat(OAB) + hat(ABO') + hat(BO'A) + hat(AOB) = 360^o`
`<=> 90^o + 90^o + 90^o + hat(AO'B) =360^o`
`<=> hat(AO'B) = 90^o => a` vuông góc `b`.
`b,` Do `hat(xOy) = 90^o` nên `A, O, B` thẳng hàng.
Vì `hat(aAB) + hat(bBA) = 90^o + 90^o = 180^o` nên `a////b`.
b) Xét ΔOMH vuông tại M và ΔONK vuông tại N có
OM=ON(gt)
\(\widehat{O}\) chung
Do đó: ΔOMH=ΔONK(cạnh góc vuông-góc nhọn kề)
Suy ra: OH=OK(hai cạnh tương ứng) và \(\widehat{H}=\widehat{K}\)(hai góc tương ứng)
Ta có: ON+NH=OH(N nằm giữa O và H)
OM+MK=OK(M nằm giữa O và K)
mà ON=OM(gt)
và OH=OK(cmt)
nên NH=MK
Xét ΔINH vuông tại N và ΔIMK vuông tại M có
NH=MK(cmt)
\(\widehat{H}=\widehat{K}\)(cmt)
Do đó: ΔINH=ΔIMK(cạnh góc vuông-góc nhọn kề)
Suy ra: IN=IM(hai cạnh tương ứng)
Xét ΔMIN có IN=IM(cmt)
nên ΔMIN cân tại I(Định nghĩa tam giác cân)
c) Ta có: ΔIMK vuông tại M(gt)
nên IK là cạnh huyền
Suy ra: IK là cạnh lớn nhất trong ΔIMK(Định lí)
hay IK>IM
mà IM=IN(cmt)
nên IK>IN