cho AM là đường trung tuyến của tam giác ABC; G là trọng tâm của tam giác ABC
CMR: SBGM= 1/6 SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Diện tích tam giác ABC là :
S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6]
= 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )
=> S ABC = 25,87228247 (cm2)
Tk mk nha
a: M là trung điểm của BC
=>AM là đường trung tuyến của ΔABC
b: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
=>ΔABM=ΔACM
=>góc BAM=góc CAM
=>AM là phân giác của góc BAC
c: Sửa đề; tam giác ABC
AB=AC
BM=CM
=>AM là trung trực của BC
Lời giải:
a) Sửa lại thành $\triangle ABM=\triangle ACM$
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$ (do $ABC$ là tam giác cân tại $A$)
$\widehat{ABM}=\widehat{ACM}$ (do $ABC$ là tam giác cân tại $A$)
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
b) Từ tam giác bằng nhau trên suy ra:
$\widehat{BAM}=\widehat{CAM}$ nên $AM$ là phân giác $\widehat{BAC}$
AM là trung trực của BC
nên A nằm trên trung trực của BC
=>AB=AC
=>ΔABC cân tại A
Ta có G là trọng tâm tam giác ABC nên AM = 3/2 AG = 3/2.6 = 9cm. Chọn B
#\(N\)
`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC, `\(\widehat{B}=\widehat{C}\)
`AM` là đường trung tuyến Tam giác `ABC -> BM = MC`
Xét Tam giác `ABM` và Tam giác `ACM` có:
`AB = AC`
\(\widehat{B}=\widehat{C}\)
`BM = MC`
`->` Tam giác `ABM =` Tam giác `ACM (c-g-c)`
`->`\(\widehat{BAM}=\widehat{CAM}\) `(2` góc tương ứng `)`
`-> AM` là phân giác của \(\widehat{BAC}\)
Xét tam giác \(\Delta ABM\) và \(\Delta ACM\)
\(AB=AC\left(gt\right)\)
\(\widehat{ABM}=\widehat{ACM}\left(gt\right)\)
\(AM\) chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)
Từ tam giác bằng nhau trên suy ra:
\(\widehat{BAM}=\widehat{CAM}\) nên \(AM\) là phân giác \(\widehat{BAC}\)
Là phân giác của \(\Delta ABC\)
Do G là trọng tâm tam giác ABC nên AG = 2/3 AM = 2/3.45 = 30cm.
Chọn A