K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

a) Vì \(\Delta ABC \backsim \Delta A'B'C'\) theo tỉ số đồng dạng \(k\) nên \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = k;\,\,\widehat B = \widehat {B'}\)

Mà AM và A’M’ lần lượt là trung tuyến của hai tam giác ABC và A’B’C’ nên M và M’ lần lượt là trung điểm của BC và B’C’.

\(\begin{array}{l} \Rightarrow BM = \frac{1}{2}BC;\,\,B'M' = \frac{1}{2}B'C'\\ \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BM}}{{B'M'}} = k\end{array}\)

Xét tam giác ABM và tam giác A’B’M’ có:

\(\frac{{AB}}{{A'B'}} = \frac{{BM}}{{B'M'}}\) và \(\widehat B = \widehat {B'}\)

\( \Rightarrow \Delta ABM \backsim \Delta A'B'M'\) (c-g-c)

\( \Rightarrow \frac{{AM}}{{A'M'}} = \frac{{BM}}{{B'M'}} = k\)

b) Vì \(\Delta ABC \backsim \Delta A'B'C'\) theo tỉ số đồng dạng \(k\) nên \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = k;\,\,\widehat B = \widehat {B'}\)

\(\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\)
Vì AD và A’D’ lần lượt là phân giác của tam giác ABC và tam giác A’B’C’ nên ta có \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}}\) và \(\frac{{D'B'}}{{D'C'}} = \frac{{A'B'}}{{A'C'}}\)

\( \Rightarrow \frac{{DB}}{{DC}} = \frac{{D'B'}}{{D'C'}} \Rightarrow \frac{{DB}}{{D'B'}} = \frac{{DC}}{{D'C'}} = \frac{{DB + DC}}{{D'B' + D'C'}} = \frac{{BC}}{{B'C'}}\)

Mà \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}}\) (chứng minh ở câu a) nên \(\frac{{DB}}{{D'B'}} = \frac{{AB}}{{A'B'}}\)

Xét tam giác ABD và tam giác A’B’D’ có:

\(\frac{{BD}}{{B'D'}} = \frac{{AB}}{{A'B'}}\) và \(\widehat B = \widehat {B'}\)

\( \Rightarrow \Delta ABD \backsim \Delta A'B'D'\) (c-g-c)

\( \Rightarrow \frac{{AD}}{{A'D'}} = \frac{{AB}}{{A'B'}} = k\)

c) Ta có \(\widehat B = \widehat {B'}\) và \(\widehat {AHB} = \widehat {A'H'B'} = 90^\circ \)

\( \Rightarrow \Delta ABH \backsim \Delta A'B'H'\) (g-g)

\( \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{AH}}{{A'H'}} = k\)

Bài 2: 

a: Gọi K là trung điểm của DC

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của DC

Do đó: MK là đường trung bình của ΔBDC

Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)

hay MK//ID

Xét ΔAMK có 

I là trung điểm của AM

ID//MK

Do đó: D là trung điểm của AK

Suy ra: AD=DK

mà DK=KC

nên AD=DK=KC

hay \(AC=AD+DK+DC=3\cdot AD\)

b: Xét ΔAMK có 

I là trung điểm của AM

D là trung điểm của AK

Do đó: ID là đường trung bình của ΔAMK

Suy ra: \(ID=\dfrac{MK}{2}\)

hay MK=2ID

mà \(MK=\dfrac{BD}{2}\)

nên \(\dfrac{BD}{2}=2\cdot ID\)

hay \(ID=\dfrac{1}{4}\cdot BD\)

27 tháng 8 2021

Xin lời giải bài 1 vs ạ

 

a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có 

\(\widehat{BAB'}\) chung

Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)

Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AB'}{AC'}=1\)

Suy ra: AB'=AC'

Ta có: AC'=AB'

AB=AC

Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)

Xét ΔAC'B' và ΔABC có 

\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)

\(\widehat{C'AB'}\) chung

Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)

Bài 2: Điểm D ở đâu vậy bạn?

26 tháng 8 2021

Mình mới sửa lại đề r ak

18 tháng 2 2022

undefined