K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điểm D đối xứng điểm H qua trục AB.

Suy ra AB là đường trung trực của HD

⇒ AH = AD (tính chất đường trung trực)

⇒ ∆ ADH cân tại A

Suy ra: AB là tia phân giác của ∠ (DAH)

⇒  ∠ (DAB) =  ∠ A 1

Điểm H và điểm E đối xứng qua trục AC

⇒ AC là đường trung trực của HE

⇒ AH = AE (tính chất đường trung trực) ⇒  ∆ AHE cân tại A

Suy ra: AC là đường phân giác của góc (HAE) ⇒  ∠ A 2  =  ∠ (EAC)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

⇒ D, A, E thẳng hàng

Ta có: AD = AE (vì cùng bằng AH)

Suy ra điểm A là trung điểm của đoạn DE.

Vậy điểm D đối xứng với điểm E qua điểm A

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE

22 tháng 12 2017

a) Xét tứ giác AMHN có:

MÂN=AMH=ANH=90độ

=> AMHN là hình chữ nhật

b) Xét tam giác ANE và tam giác DME có

AN=DM(=MH)

NE=AM(=HN)

góc ANE = góc DMA (=90 độ)

Do đó tam giác ANE = tam giác DME (C-G-C)

=> góc ADM = NAE

Trong tam giác DMA vuông tại M có:

góc ADM +MAD=90

NAE + MAD=90

Ta có 

DAE=DAM+MAN+NAE

DAE=90+DAM+NAE

DAE=90+90

DAE=180

Vậy D,A,E thẳng hàng

5 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

∆ ADB =  ∆ AHB ⇒ BD = BH.

∆ AEC =  ∆ AHC ⇒ CE = CH.

Vậy BD + CE = BH + CH = BC.

24 tháng 10 2021

a: Ta có: H và D đối xứng nhau qua BA

nên AB là đường trung trực của HD

Suy ra: AB\(\perp\)HD và M là trung điểm của HD

Ta có: H và E đối xứng nhau qua AC

nên AC là đường trung trực của HE

Suy ra: AC\(\perp\)HE và N là trung điểm của HE

Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

16 tháng 12 2021

a: Xét tứ giác AKHM có 

\(\widehat{AKH}=\widehat{AMH}=\widehat{MAK}=90^0\)

Do đó: AKHM là hình chữ nhật

Suy ra: AH=KM