Cho hình thang ABCD vuông tại A và D, có AB = AD = 2; CD = 4. Độ dài \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=...\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho hình thang ABCD vuông tại A và D . Có AB=AD=\(\frac{DC}{2}\). Tính các góc B và C của hình thang
a: BD=căn 15^2+20^2=25cm
OD=AD^2/BD=400/25=16cm
OB=25-16=9cm
AO=căn 16*9=12cm
ΔADC vuông tại D có DO là đường cao
nên AD^2=AO*AC
=>AC=20^2/12=400/12=100/3(cm)
b: DC=căn AC^2-AD^2=căn (100/3)^2-20^2=80/3cm
S ABCD=1/2*(AB+CD)*AD
=1/2*20*(15+100/3)=10*145/3=1450/3cm2
a.
\(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)
\(\Rightarrow\widehat{SBA}=\left(SB;\left(ABCD\right)\right)\)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SBA}\approx35^016'\)
Tương tự \(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=\left(SC;\left(ABCD\right)\right)\)
\(AC=\sqrt{AD^2+DC^2}=a\sqrt{2}\)
\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)
b.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow\left(AH;\left(SAD\right)\right)=90^0-\left(AH;AB\right)=90^0-\widehat{HAB}\)
Gọi E là trung điểm AB \(\Rightarrow ADCE\) là hình vuông \(\Rightarrow\widehat{ACE}=45^0\)
Tam giác BCE vuông cân tại E (do \(EB=EC=a\)) nên \(\widehat{ECB}=45^0\)
\(\Rightarrow\widehat{ACB}=90^0\) hay \(BC\perp AC\Rightarrow BC\perp\left(SAC\right)\) (do \(SA\perp BC\))
\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp BH\)
Hay tam giác ABH vuông tại H
\(AH=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)
\(\Rightarrow cos\widehat{HAB}=\dfrac{AH}{AB}=\dfrac{1}{2}\Rightarrow\widehat{HAB}=60^0\)
\(\Rightarrow\widehat{HAB}=60^0\Rightarrow\left(AH;\left(SAD\right)\right)=30^0\)
Theo cmt \(BC\perp\left(SAC\right)\Rightarrow\left(SB;\left(SAC\right)\right)=\widehat{BSC}\)
\(SC=\sqrt{SA^2+AC^2}=2a\) ; \(SB=\sqrt{SA^2+AB^2}=a\sqrt{6}\)
\(\Rightarrow cos\widehat{BSC}=\dfrac{SC}{SB}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{BSC}\approx35^016'\)
Đặt \(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DC}=3.\overrightarrow{AB}+\overrightarrow{AD}\) (do \(\overrightarrow{DC}=2\overrightarrow{AB}\))
\(\Rightarrow\left|\overrightarrow{u}\right|^2=\left(3\overrightarrow{AB}+\overrightarrow{AD}\right)^2=9AB^2+AD^2+6\overrightarrow{AB}.\overrightarrow{AD}=9AB^2+AD^2=10AB^2\)
\(\Rightarrow\left|\overrightarrow{u}\right|=AB\sqrt{10}=2\sqrt{10}\)