K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 8 2020

Đặt \(\overrightarrow{u}=\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DC}=3.\overrightarrow{AB}+\overrightarrow{AD}\) (do \(\overrightarrow{DC}=2\overrightarrow{AB}\))

\(\Rightarrow\left|\overrightarrow{u}\right|^2=\left(3\overrightarrow{AB}+\overrightarrow{AD}\right)^2=9AB^2+AD^2+6\overrightarrow{AB}.\overrightarrow{AD}=9AB^2+AD^2=10AB^2\)

\(\Rightarrow\left|\overrightarrow{u}\right|=AB\sqrt{10}=2\sqrt{10}\)

3 tháng 5 2017

Đáp án cần chọn là: B

19 tháng 6 2018

HS tự chứng minh

7 tháng 2 2019

12 tháng 3 2017

Chọn B

a: BD=căn 15^2+20^2=25cm

OD=AD^2/BD=400/25=16cm

OB=25-16=9cm

AO=căn 16*9=12cm

ΔADC vuông tại D có DO là đường cao

nên AD^2=AO*AC

=>AC=20^2/12=400/12=100/3(cm)

b: DC=căn AC^2-AD^2=căn (100/3)^2-20^2=80/3cm

S ABCD=1/2*(AB+CD)*AD

=1/2*20*(15+100/3)=10*145/3=1450/3cm2

15 tháng 6 2017

3)áp dụng pytago để tính

NV
1 tháng 3 2023

a.

\(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)

\(\Rightarrow\widehat{SBA}=\left(SB;\left(ABCD\right)\right)\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{SBA}\approx35^016'\)

Tương tự \(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=\left(SC;\left(ABCD\right)\right)\)

\(AC=\sqrt{AD^2+DC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

b.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

\(\Rightarrow\left(AH;\left(SAD\right)\right)=90^0-\left(AH;AB\right)=90^0-\widehat{HAB}\)

Gọi E là trung điểm AB \(\Rightarrow ADCE\) là hình vuông \(\Rightarrow\widehat{ACE}=45^0\)

Tam giác BCE vuông cân tại E (do \(EB=EC=a\)) nên \(\widehat{ECB}=45^0\)

\(\Rightarrow\widehat{ACB}=90^0\) hay \(BC\perp AC\Rightarrow BC\perp\left(SAC\right)\) (do \(SA\perp BC\))

\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp BH\)

Hay tam giác ABH vuông tại H 

\(AH=\dfrac{SA.AC}{\sqrt{SA^2+AC^2}}=a\)

\(\Rightarrow cos\widehat{HAB}=\dfrac{AH}{AB}=\dfrac{1}{2}\Rightarrow\widehat{HAB}=60^0\)

\(\Rightarrow\widehat{HAB}=60^0\Rightarrow\left(AH;\left(SAD\right)\right)=30^0\)

Theo cmt \(BC\perp\left(SAC\right)\Rightarrow\left(SB;\left(SAC\right)\right)=\widehat{BSC}\)

\(SC=\sqrt{SA^2+AC^2}=2a\) ; \(SB=\sqrt{SA^2+AB^2}=a\sqrt{6}\)

\(\Rightarrow cos\widehat{BSC}=\dfrac{SC}{SB}=\dfrac{\sqrt{6}}{3}\Rightarrow\widehat{BSC}\approx35^016'\)

NV
1 tháng 3 2023

loading...