\(\Delta\) BFC cân tại B. FE \(\perp\) BC tại E; CA \(\perp\) BF tại A. FE cắt CA tại D. M: trung điểm FC. CM:
a) \(\Delta\) BEF = \(\Delta\) BAC.
b) BD: tia phân giác \(\widehat{ABC}\).
c) BM \(\perp\) AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg ABM và tg ACM có
MB=MC (đề bài)
AB=AC (Do tg ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)
=> tg ABM=tg ACM (c.g.c)
Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)
b/
Xét tg vuông BME và tg vuông CMF có
MB=MC
\(\widehat{ABC}=\widehat{ACB}\)
=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M
c/
Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)
\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )
=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\) (Trong tg can EMF đường phân giác đồng thời là đường cao)
Mà \(AM\perp BC\)
=> EF//BC (cùng vuông góc với AM)
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
a) +) Xét ΔBFE vuông tại E và Δ BAC vuông tại A có
BF = BC ( do Δ BFC cân tại B )
FBC : góc chung
⇒ Δ BEF = Δ BAC (ch-gn)
⇒ BE = BA ( 2 cạnh tương ứng)
b) +) Xét Δ BED vuông tại E và ΔBAD vuông tại A có
AD: cạnh chung
BE = BA (cmt)
⇒ Δ BED = Δ BAD (ch-cgv)
⇒ EBD = ABD ( 2 góc tương ứng)
hay CBD =ABD
=> BD là phân giác góc ABC
c) +) Xét ΔBFM và Δ BCM có
BF = BC ( do Δ FBC cân tại B )
\(\widehat{F}=\widehat{C}\) ( do Δ FBC cân tại B )
FM = CM ( do M là trung điểm FC )
⇒ Δ BFM = Δ BCM ( c.g.c)
⇒ \(\widehat{BMF}=\widehat{BMC}\)( 2 góc tương ứng)
+) Mà \(\widehat{BMF}+\widehat{BMC}\)= 180 ( kề bù)
⇒ \(\widehat{BMF}=\widehat{BMC}=90^o\)
+) Lại có BM cắt FC tại M
⇒ BM ⊥ FCB (1)
+) Xét ΔBEA có
BE = BA
=> Δ BEA cân tại B
⇒ \(\widehat{AEB}=\frac{180^o-\widehat{FBC}}{2}\)2 ( tính chất tam giác cân )
Mặt khác \(\widehat{FCB}=\frac{180^o-\widehat{FBC}}{2}\) ( do Δ FBC cân tại B )
⇒ AEB = BCF
Mà 2 góc này ở vị trí đồng vị
⇒ AE // CF (2)
Từ (1) và (2) => BM ⊥ AE
Học tốt __ hơi dài ạ
Xóa giùm t cái hình đi ạ :))
Nộp r ms thấy chx xóa hình
Học tốt ạ
@@@
a) Xét hai tam giác vuông ΔBEF và ΔBAC
có:
BF=BC
(do ΔBFC
cân đỉnh B)
ˆB
chung
⇒ΔBEF=ΔBAC
(cạnh huyền-góc nhọn).
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA
(hai tương ứng)
Mà ΔBFC
cân đỉnh B nên: ˆBFC=ˆBCF
ˆBFC−ˆBFE=ˆBCF−ˆBCA
⇒ˆEFC=ˆACF
hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC
Xét ΔBFD
và ΔBCD
có:
BF=BC
(giả thiết)
BD
chung
DF=DC
(cmt)
⇒ΔBFD=ΔBCD
(c.c.c)
⇒ˆFBD=ˆCBD
(hai góc tương ứng)
⇒BD
là phân giác ˆFBC
.
c) ΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE
hay AF=EC
Xét ΔAFM
và ΔECM
có:
FM=CM
(do M là trung điểm cạnh FC)
ˆAFM=ˆECM
(giả thiết)
AF=EC
(cmt)
⇒ΔAFM=ΔECM
(c.g.c)
⇒MA=ME
lại có BA=BE⇒MB là trung trực của AE
⇒MB⊥AE
.
B F C A M E D
a) Xét 2 tam giác BEF và BAC có :
BF = BC ( Tam giác BCF cân tại B )
Góc B chung
=> Tam giác BEF = BAC ( ch-gn )
b) Vì tam giác BEF = BAC ( cmt )
-> Góc BFE = góc BCA ( 2 góc t/ứng )
Mà tam giác BCF cân tại B
=> BFC = BCF
BFC - BFE = BCF - BCA
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)
=> Tam giác DFC cân tại đỉnh D
=> DF = DC
Xét tam giác BFD và BCD có :
BF = BC ( gt )
BD chung
DF = DC ( cmt )
=> = nhau ( c.c.c)
=> FBD = CBD ( 2 góc t/ứng )
=> BD là tia phân giác của góc ABC
c) Vì tam giác BEF = BAC
=> BE = BA
=> BF - BA = BC - BE hay AF = EC
Xét tam giác AFM và ECM có :
FM = CM ( do M là trg điểm FC )
AFM = ECM ( gt )
AF = EC ( cmt )
=> = nhau ( c.g.c )
=> MA = ME lại có BA = BE
=> MB là trg trực của AE
=> BM vuông góc AE
Xét\(\Delta BEF(\widehat{E}=90^0)\)và \(\Delta BAC(\widehat{A}=90^0)\)ta có:
\(\Delta BEF=\Delta BAC\hept{\begin{cases}\widehat{B}\\BF=BC\end{cases}}\)(cạnh huyền-góc nhọn)
b) \(FE\perp BC;CA\perp BF\)
FE và CA giao nhau tại D => D là trực tâm của tam giác
\(\Rightarrow BD\perp FC\)
Mà BFC là tam giác cân => BD là tia phân giác \(\widehat{ABC}\)