Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +) Xét ΔBFE vuông tại E và Δ BAC vuông tại A có
BF = BC ( do Δ BFC cân tại B )
FBC : góc chung
⇒ Δ BEF = Δ BAC (ch-gn)
⇒ BE = BA ( 2 cạnh tương ứng)
b) +) Xét Δ BED vuông tại E và ΔBAD vuông tại A có
AD: cạnh chung
BE = BA (cmt)
⇒ Δ BED = Δ BAD (ch-cgv)
⇒ EBD = ABD ( 2 góc tương ứng)
hay CBD =ABD
=> BD là phân giác góc ABC
c) +) Xét ΔBFM và Δ BCM có
BF = BC ( do Δ FBC cân tại B )
\(\widehat{F}=\widehat{C}\) ( do Δ FBC cân tại B )
FM = CM ( do M là trung điểm FC )
⇒ Δ BFM = Δ BCM ( c.g.c)
⇒ \(\widehat{BMF}=\widehat{BMC}\)( 2 góc tương ứng)
+) Mà \(\widehat{BMF}+\widehat{BMC}\)= 180 ( kề bù)
⇒ \(\widehat{BMF}=\widehat{BMC}=90^o\)
+) Lại có BM cắt FC tại M
⇒ BM ⊥ FCB (1)
+) Xét ΔBEA có
BE = BA
=> Δ BEA cân tại B
⇒ \(\widehat{AEB}=\frac{180^o-\widehat{FBC}}{2}\)2 ( tính chất tam giác cân )
Mặt khác \(\widehat{FCB}=\frac{180^o-\widehat{FBC}}{2}\) ( do Δ FBC cân tại B )
⇒ AEB = BCF
Mà 2 góc này ở vị trí đồng vị
⇒ AE // CF (2)
Từ (1) và (2) => BM ⊥ AE
Học tốt __ hơi dài ạ
Xóa giùm t cái hình đi ạ :))
Nộp r ms thấy chx xóa hình
Học tốt ạ
@@@
a) Xét hai tam giác vuông ΔBEF và ΔBAC
có:
BF=BC
(do ΔBFC
cân đỉnh B)
ˆB
chung
⇒ΔBEF=ΔBAC
(cạnh huyền-góc nhọn).
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA
(hai tương ứng)
Mà ΔBFC
cân đỉnh B nên: ˆBFC=ˆBCF
ˆBFC−ˆBFE=ˆBCF−ˆBCA
⇒ˆEFC=ˆACF
hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC
Xét ΔBFD
và ΔBCD
có:
BF=BC
(giả thiết)
BD
chung
DF=DC
(cmt)
⇒ΔBFD=ΔBCD
(c.c.c)
⇒ˆFBD=ˆCBD
(hai góc tương ứng)
⇒BD
là phân giác ˆFBC
.
c) ΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE
hay AF=EC
Xét ΔAFM
và ΔECM
có:
FM=CM
(do M là trung điểm cạnh FC)
ˆAFM=ˆECM
(giả thiết)
AF=EC
(cmt)
⇒ΔAFM=ΔECM
(c.g.c)
⇒MA=ME
lại có BA=BE⇒MB là trung trực của AE
⇒MB⊥AE
.
a) Xét 2 tam giác BEF và BAC có :
BF = BC ( Tam giác BCF cân tại B )
Góc B chung
=> Tam giác BEF = BAC ( ch-gn )
b) Vì tam giác BEF = BAC ( cmt )
-> Góc BFE = góc BCA ( 2 góc t/ứng )
Mà tam giác BCF cân tại B
=> BFC = BCF
BFC - BFE = BCF - BCA
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)
=> Tam giác DFC cân tại đỉnh D
=> DF = DC
Xét tam giác BFD và BCD có :
BF = BC ( gt )
BD chung
DF = DC ( cmt )
=> = nhau ( c.c.c)
=> FBD = CBD ( 2 góc t/ứng )
=> BD là tia phân giác của góc ABC
c) Vì tam giác BEF = BAC
=> BE = BA
=> BF - BA = BC - BE hay AF = EC
Xét tam giác AFM và ECM có :
FM = CM ( do M là trg điểm FC )
AFM = ECM ( gt )
AF = EC ( cmt )
=> = nhau ( c.g.c )
=> MA = ME lại có BA = BE
=> MB là trg trực của AE
=> BM vuông góc AE
Bài làm
a) Xét tam giác BAC và tam giác BEF có:
^BAC = ^BEF ( = 90o )
cạnh huyền BC = BF
góc nhọn: ^B chung.
=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )
b) Ta có: ^BFD + ^DFC = ^BFC
^BCA + ^ACF = ^BCF
hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )
^BCF = ^BFC
=> ^DFC = ^DCF
=> Tam giác DFC cân tại D
=> DF = DC
Xét tam giác BDF và tam giác BDC có:
BF = BC
DF = DC
BD chung
=> Tam giác BDF = tam giác BDC
=> ^FBD = ^CBD
=> BD là tia phân giác của góc FBC
c) Vì Tam giác FBC cân tại B
mà BM trung tuyến
=> BM là đường cao
=> BM vuông góc với FC
Vì AB = BE ( Do tam giác BAC = tam giác BFE )
=> Tam giác ABE cân tại B
=> ^ABE = ( 180o - ^FBC )/2 (1)
Vì Tam giác BFC cân tại B
=> ^BFC = ( 180o - ^FBC )/2 (2)
Từ (1) và (2) => ^ABE = ^BFC
Mà hai góc này vị trí đồng vị
=> AE // FC
Mà BM vuông góc FC
=> BM vuông góc với AC ( đpcm )
# Học tốt #
a ) Xét 2 tam giác vuông \(\Delta BEF\) và \(\Delta BAC\) có :
\(BF=BC\) ( do \(\Delta BFC\) cân đỉnh B )
\(\widehat{B}\) : chung
\(\Rightarrow\Delta BEF=\Delta BAC\) (cạnh huyền-góc nhọn).
b ) Theo câu a ) ta có : \(\Delta BEF=\Delta BAC\) \(\Rightarrow\widehat{BFE}=\widehat{BCA}\) (hai góc tương ứng)
Mà \(\Delta BFC\) cân đỉnh B nên : \(\widehat{BFC}=\widehat{BCF}\)
\(\widehat{BFC}-\widehat{BFE}=\widehat{BCF}-\widehat{BCA}\)
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF}\)
Hay \(\widehat{DFC}=\widehat{DCF}\) \(\Rightarrow\Delta DFC\) cân đỉnh D \(\Rightarrow DF=DC\)
Xét \(\Delta BFD\) và \(\Delta BCD\) có :
\(BF=BC\left(gt\right)\)
\(BD\) : chung
\(DF=DC\left(cmt\right)\)
\(\Rightarrow\Delta BFD=\Delta BCD\left(c.c.c\right)\)
\(\Rightarrow\widehat{FBD}=\widehat{CBD}\) (hai góc tương ứng)
\(\Rightarrow BD\) là phân giác của \(\widehat{FBC}\)
c ) Ta có \(\Delta BEF=\Delta BAC\)( câu a )
\(\Rightarrow BE=BA\) ( 2 cạnh tương ứng )
\(\Rightarrow BF-BA=BC-BE\) hay AF = EC
Xét \(\Delta AFM\)và \(\Delta ECM\) có :
\(FM=CM\) ( vì M là trung điểm cạnh FC )
\(\widehat{AFM}=\widehat{ECM}\left(gt\right)\)
AF = EC ( cmt )
=> \(\Delta AFM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow MA=ME\) lại có BA = BE \(\Rightarrow MB\) là trung trực của AE
\(\Rightarrow MB\perp AE\) ( đpcm )
Đáp án:
a) Xét ΔBEF và ΔBAC có:
+) BF=BC( vì ΔBFC cân tại B)
+) ∠B chung
+) ∠A=∠E=90 độ(gt)
⇒ΔBEF=ΔBAC (Cạnh huyền-góc nhọn)
b)Xét ΔBDF và ΔBDC có:
+) BD chung
+) BF=BC( vì ΔBFC cân tại B)
+)∠BFE=∠BCA( vì ΔBEF=ΔBAC)
⇒ΔBDF=ΔBDC(c-g-c)
⇒∠FBD=∠CBD(hai góc tương ứng bằng nhau)
⇒BD là tia phân giác ∠ABC
c) Ta có: M là trung điểm của FC nên BM vừa là trung tuyến vừa là đường cao của Δ cân BFC
⇒BM⊥FC (1)
Vì ΔBEF=ΔBAC(câu a)⇒BA=BE(hai cạnh tương ứng bằng nhau)
⇒ΔABE cân tại E⇒∠BAE=∠BEA
⇒∠BAE=180 độ-góc B chia 2 (2)
Mà ΔBFC cân tại B(gt)⇒∠BFC=∠BCF
⇒∠BFC=180 độ-góc B chia 2 (3)
Từ (2), (3) suy ra ∠BAE=∠BFC. Mà 2 góc này ở vị trí đồng vị⇒ AE║FC (4)
Từ (1) và (4) ⇒ BM⊥AE