Cho tam giác ABC vuông tại A có BC = 26cm, AB = 10cm. Tính AC, B ^ (làm tròn đến độ)
A. AC = 22; C ^ ≈ 67 0
B. AC = 24; C ^ ≈ 66 0
C. AC = 24; C ^ ≈ 67 0
D. AC = 24; C ^ ≈ 68 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác abc vuông tại b
=>ac là cạnh huyền
=> ac>bc
Nhưng theo gt ac<bc(10<26)
=> Không tồn tại tam giác abc như trên
=> Không tính được ab!!
Mà tên các cạnh phải vt in hoa chứ: AB, BC, AC!!
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a) Ta có:
\(\widehat{B}=180^o-90^o-52^o=28^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)
\(\Rightarrow AB\approx11,55\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)
\(\Rightarrow\widehat{B}\approx58^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)
c) Ta có:
\(\widehat{C}=180^o-90^o-35^o=55^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)
\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)
a) \(\widehat{B}=180^o-90^o-52^o=38^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\)
b) \(\widehat{C}=180^o-90^o-58^o=32^o\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\left(cm\right)\)
hay \(AB=\dfrac{14\sqrt{2}}{5}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{14\sqrt{2}}{5}:\dfrac{57}{10}=\dfrac{28\sqrt{2}}{57}\)
hay \(\widehat{C}\simeq44^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{B}=90^0\)
hay \(\widehat{B}=46^0\)
Xét tam giác ABC vuông tại A có:
Đáp án cần chọn là: C