Cho tam giác ABC vuông tại A có BC = 26cm, AB = 10cm. Tính AC, (làm tròn đến độ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tam giác abc vuông tại b
=>ac là cạnh huyền
=> ac>bc
Nhưng theo gt ac<bc(10<26)
=> Không tồn tại tam giác abc như trên
=> Không tính được ab!!
Mà tên các cạnh phải vt in hoa chứ: AB, BC, AC!!

3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

a) Ta có:
\(\widehat{B}=180^o-90^o-52^o=28^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)
\(\Rightarrow AB\approx11,55\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)
\(\Rightarrow\widehat{B}\approx58^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)
c) Ta có:
\(\widehat{C}=180^o-90^o-35^o=55^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)
\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)
a) \(\widehat{B}=180^o-90^o-52^o=38^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\)
b) \(\widehat{C}=180^o-90^o-58^o=32^o\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\left(cm\right)\)
hay \(AB=\dfrac{14\sqrt{2}}{5}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{14\sqrt{2}}{5}:\dfrac{57}{10}=\dfrac{28\sqrt{2}}{57}\)
hay \(\widehat{C}\simeq44^0\)
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{C}+\widehat{B}=90^0\)
hay \(\widehat{B}=46^0\)
Xét tam giác ABC vuông tại A có:
Đáp án cần chọn là: C