K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\left(cm\right)\)

hay \(AB=\dfrac{14\sqrt{2}}{5}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{14\sqrt{2}}{5}:\dfrac{57}{10}=\dfrac{28\sqrt{2}}{57}\)

hay \(\widehat{C}\simeq44^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{C}+\widehat{B}=90^0\)

hay \(\widehat{B}=46^0\)

31 tháng 8 2023

cách nào để tính từ sin \(\widehat{C}\)

chuyền sang \(^{\widehat{C}}\) vậy ạ?

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{C}+\widehat{B}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{B}+60^0=90^0\)

hay \(\widehat{B}=30^0\)

Xét ΔABC vuông tại A có 

\(AC=AB\cdot\tan\widehat{B}\)

\(\Leftrightarrow AC=10\cdot\tan30^0\)

hay \(AC=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=\left(\dfrac{10\sqrt{3}}{3}\right)^2+10^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

 

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=5.7^2-4.1^2=15,68\)

hay \(AB\simeq3,96\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{41}{57}\)

nên \(\widehat{B}\simeq46^0\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+46^0=90^0\)

hay \(\widehat{C}=44^0\)

22 tháng 9 2017

a) Ta có: \(AC=AB.\cot\widehat{C}=21.\cot\widehat{40^o}\simeq25,0268\left(cm\right)\)

b) Ta có: \(BC=\dfrac{AC}{\sin\widehat{C}}=\dfrac{21}{\sin\widehat{40^o}}\simeq32,6702\left(cm\right)\)

c) Vì ΔABCΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^o\)

Suy ra: \(\widehat{B}=90^o-\widehat{C}=90^o-40^o=50^o\)

Vì BD là phân giác của B nên:

\(\widehat{ABD}=\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}.50^o=25^o\)

Trong tam giác vuông ABD, ta có:

\(BD=\dfrac{AB}{\cos\widehat{ABD}}=\dfrac{21}{\cos25^o}\simeq23,1709\left(cm\right)\)

1 tháng 6 2017

bài trong sbt có giải á bạn

15 tháng 7 2017

a) Trong tam giác vuông BCH, ta có:

CH=BC.sin⁡B^=12.sin⁡60≈10,392 (cm)

Trong tam giác vuông ABC, ta có:

\(A\)=180−(60+40)=80

Trong tam giác vuông ACH, ta có:

\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)

b) Kẻ AK⊥BCAK⊥BC

Trong tam giác vuông ACK, ta có:

AK=AC.sin⁡C≈10,552.sin⁡40=6,783 (cm)

Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)



25 tháng 10 2017

mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày 

A B C 4 9

Ta có : BC = BH +HC = 4 + 9 = 13 (cm)

Theo hệ thức lượng trong tam giác vuông ta có:

- AC2 = BC * HC 

AC2 = 13 * 9 = 117 

AC = \(3\sqrt{13}\)(cm)

- AB2 =BH * BC 

AB2 = 13 * 4 = 52 

AB = \(2\sqrt{13}\)(CM)

25 tháng 10 2017

trong sbt có giải ý. dựa vào mà lm

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

Xét ΔANB vuông tại N có 

\(AN=AB\cdot\sin B\)

nên \(AN\simeq6,772\left(cm\right)\)

XétΔACN vuông tại N có 

\(AC=\dfrac{AN}{\sin C}=13,544\left(cm\right)\)