K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì \(\widehat{B}=120^0\) nên đường cao AH ứng với cạnh BC sẽ nằm ngoài tam giác ABC

Ta có: \(\widehat{ABH}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{ABH}+120^0=180^0\)

hay \(\widehat{ABH}=60^0\)

Xét ΔABH vuông tại H có

\(\widehat{ABH}=60^0\)(cmt)

nên \(\sin\widehat{ABH}=\dfrac{\sqrt{3}}{2}\)\(\cos\widehat{ABH}=\dfrac{1}{2}\)\(\tan\widehat{ABH}=\sqrt{3}\)\(\cot\widehat{ABH}=\dfrac{\sqrt{3}}{3}\)

Xét ΔABH vuông tại H có 

\(\widehat{BAH}=30^0\)

nên \(\sin\widehat{BAH}=\dfrac{1}{2}\)\(\cos\widehat{BAH}=\dfrac{\sqrt{3}}{2}\)\(\tan\widehat{BAH}=\dfrac{\sqrt{3}}{3}\)\(\cot\widehat{BAH}=\sqrt{3}\)