Cho tứ giác ABCD nội tiếp trong đường tròn biết A^ = 75 độ ; B= 60 độ . Tình số đo góc C và góc D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEH+góc BFH=90 độ
=>BEHF nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
Xét ΔABK vuông tại B và ΔAFC vuông tại F có
góc AKB=góc ACF
=>ΔABK đồng dạng với ΔAFC
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{C}=180^o-80^o=100^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Rightarrow\widehat{D}=180^o-60^o=120^o\)
Ta có:
\(\widehat{A}+\widehat{C}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow55^o+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}=180^o-55^o=125^o\)
Ta có:
\(\widehat{B}+\widehat{D}=180^o\) ( góc đối của tứ giác nội tiếp )
\(\Leftrightarrow\widehat{B}+65^o=180^o\)
\(\Rightarrow\widehat{B}=180^o-65^o=115^o\)
2:
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
góc OKM=góc OAM=góc OBM=90 độ
=>O,P,A,M,B cùng nằm trên đường tròn đường kính OM
góc AKM=góc AOM
góc BKM=góc BOM
mà góc AOM=góc BOM
nên góc AKM=góc BKM
=>KM là phân giác của góc AKB
ABCD nội tiếp \(\Leftrightarrow\left\{{}\begin{matrix}A+C=180^0\\B+D=180^0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}C=140^0\\D=120^0\end{matrix}\right.\)
\(\Rightarrow C-D=20^0\)
A B C D O
Vì tứ giác ABCD nội tiếp (O)
=> góc B + góc C = 180 độ (tổng 2 góc đối bằng 180 độ)
=> 60 + góc C = 180
=> góc C = 180 - 60 = 120 độ
Tiếp tục, ta cũng có góc A + góc D = 180 độ
=> 75 + góc D = 180
=> góc D = 180 - 75 = 105 độ
Note: Bài này đoạn kết còn có cách tính khác, cần inbox mình
Theo mk thi: goc C=105° va goc D=120°
Aj thay dung thj ung ho mk nha!!! Cam on.